|   | ā | 3 | ľ  | ١ |
|---|---|---|----|---|
|   | ٩ | d | ь  | j |
|   | é | P |    |   |
|   | ì |   |    |   |
|   |   |   | Ľ  |   |
|   | ¢ | 7 | C  |   |
|   | à | ì | ī  | i |
|   | ٩ | ١ |    | d |
| = | = |   | =  |   |
|   | ¢ | P | •  |   |
|   | 8 |   |    |   |
|   | ¢ | : | 4  |   |
|   | ã | Ē |    |   |
|   | ٩ | j | ь  | į |
|   | ē | i |    | į |
|   | ā | i |    | 3 |
|   | 3 | ١ |    | į |
|   | 4 | į |    |   |
|   | 9 |   |    |   |
|   | ì |   | =  |   |
|   | ē |   |    |   |
|   | Ē |   |    |   |
|   | Ē |   |    | į |
|   | ì |   | 1  |   |
|   |   |   |    | į |
|   |   |   |    | į |
|   | i | 5 |    |   |
|   | ï | Ē | 2  |   |
|   | ï | i | P  |   |
|   | ì |   | 9  | i |
|   | : |   | 5  | i |
|   | • | ľ |    |   |
| ı | ÷ |   |    |   |
|   | ċ |   | -  |   |
|   |   |   |    |   |
|   | ٠ | 1 |    |   |
|   | Ç | J | Ľ  |   |
| - | - |   | -  |   |
|   | ¢ | ۰ |    | ٦ |
| - | 1 |   |    |   |
|   | ζ | 7 | τ  |   |
| : | - |   | -  | ۰ |
| ۰ | - |   | =  |   |
|   | ζ |   | ζ  |   |
|   | ٠ |   | 5  | , |
|   | S |   | _  |   |
|   | ζ | ď | ١, | į |
|   |   |   |    |   |
|   | C | 1 | r  |   |
|   | , |   |    |   |
|   | 5 |   | ÷  | į |
|   | ¢ |   |    |   |
|   | á |   |    |   |
|   | S | é |    |   |
|   | đ |   | 5  | i |
|   | í |   | t  |   |
|   | 4 |   |    |   |
|   | 3 |   |    |   |
| ۰ | 7 |   | ۰  | ١ |
|   | ٩ | ۰ | ۰  | • |
|   | _ |   |    |   |
| Ĺ | _ |   | 1  |   |
|   |   |   |    |   |

| QUANTITY OF AIR SUCKED BY GENERATORS AT DIFFERENT VACUUM LEVELS                    | PAG. 8.01        |
|------------------------------------------------------------------------------------|------------------|
| VACUUM GENERATOR EVACUATION TIME AT DIFFERENT VACUUM LEVELS                        | PAG. 8.02        |
| MINIMUM PIPE INTERNAL DIAMETER RECOMMENDED FOR THE GENERATORS                      | PAG. 8.03        |
| SINGLE-STAGE VACUUM GENERATOR 15 01 10                                             | PAG. 8.04        |
| DIAGRAMS REFERRING TO VACUUM GENERATOR 15 01 10                                    | PAG. 8.05        |
| SINGLE-STAGE VACUUM GENERATOR 15 03 10                                             | PAG. 8.06        |
| DIAGRAMS REFERRING TO VACUUM GENERATOR 15 03 10                                    | PAG. 8.07        |
| SINGLE-STAGE VACUUM GENERATOR WITH EJECTOR 15 02 10                                | PAG. 8.08        |
| DIAGRAMS REFERRING TO VACUUM GENERATOR 15 02 10                                    | PAG. 8.09        |
| SINGLE-STAGE VACUUM GENERATOR WITH EJECTOR 15 04 10                                | PAG. 8.10        |
| DIAGRAMS REFERRING TO VACUUM GENERATOR 15 04 10                                    |                  |
| IN-LINE SINGLE-STAGE VACUUM GENERATOR PVP 1                                        | PAG. 8.11        |
| DIAGRAMS REFERRING TO VACUUM GENERATOR PVP 1                                       | PAG. 8.12        |
|                                                                                    | PAG. 8.13        |
| IN-LINE SINGLE-STAGE VACUUM GENERATORS GV 1, GV 2 and GV 3                         | PAG. 8.14        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS GV 1, GV 2 and GV 3                        | PAG. 8.15        |
| SINGLE-STAGE VACUUM GENERATOR PVP 2                                                | PAG. 8.16        |
| DIAGRAMS REFERRING TO VACUUM GENERATOR PVP 2                                       | PAG. 8.17        |
| SINGLE-STAGE VACUUM GENERATOR PVP 3                                                | PAG. 8.18        |
| DIAGRAMS REFERRING TO VACUUM GENERATOR PVP 3                                       | PAG. 8.19        |
| SINGLE-STAGE VACUUM GENERATOR PVP 2 M                                              | PAG. 8.20        |
| DIAGRAMS REFERRING TO VACUUM GENERATOR PVP 2 M                                     | PAG. 8.21        |
| SINGLE-STAGE VACUUM GENERATOR PVP 7 X                                              | PAG. 8.22        |
| DIAGRAMS REFERRING TO VACUUM GENERATOR PVP 7 X                                     | PAG. 8.23        |
| SINGLE-STAGE VACUUM GENERATOR PVP 7 SX                                             | PAG. 8.24        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 7 SX                                   | PAG. 8.25        |
| FIXING SUPPORTS FOR SINGLE-STAGE VACUUM GENERATORS                                 | PAG. 8.26 ÷ 8.27 |
| MULTI-STAGE VACUUM GENERATORS - GENERAL INFORMATION                                | PAG. 8.28        |
| MULTI-STAGE VACUUM GENERATORS SERIES M                                             | PAG. 8.29        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS M 3 and M 7                                | PAG. 8.30        |
| MULTI-STAGE VACUUM GENERATORS M 10, M 14 and M 18                                  | PAG. 8.31        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS M 10, M 14 and M 18                        | PAG. 8.32        |
| MULTI-STAGE VACUUM GENERATORS M 3 SSX and M 7 SSX                                  | PAG. 8.33        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS M 3 SSX and M 7 SSX                        | PAG. 8.34        |
| MULTI-STAGE VACUUM GENERATORS M 10 SSX, M 14 SSX and M 18 SSX                      | PAG. 8.35        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS M 10 SSX, M 14 SSX and M 18 SSX            | PAG. 8.36        |
| FIXING SUPPORTS FOR MULTI-STAGE VACUUM GENERATORS SERIES M                         | PAG. 8.37        |
| MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS SERIES MVG — GENERAL INFORMATION  | PAG. 8.38        |
| MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS MVG 3 and MVG 7                   | PAG. 8.39        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS MVG 3 and MVG 7                            | PAG. 8.40        |
| MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS MVG 10 and MVG 14                 | PAG. 8.41        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS MVG 10 and MVG 14                          | PAG. 8.42        |
| ACCESSORIES AND SPARE PARTS FOR VACUUM GENERATORS SERIES MVG                       | PAG. 8.43 ÷ 8.45 |
| MULTI-STAGE, MULTI-FUNCTION AND MODULAR VACUUM GENERATORS                          |                  |
| SERIES GVMM — GENERAL INFORMATION                                                  | PAG. 8.46        |
| MULTI-STAGE, MULTI-FUNCTION AND MODULAR VACUUM GENERATORS GVMM 3 and GVMM 7        | PAG. 8.47        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS GVMM 3 and GVMM 7                          | PAG. 8.48        |
| MULTI-STAGE, MULTI-FUNCTION AND MODULAR VACUUM GENERATORS GVMM 10 and GVMM 14      | PAG. 8.49        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS GVMM 10 and GVMM 14                        | PAG. 8.50        |
| MULTI-STAGE, MULTI-FUNCTION AND MODULAR INTERMEDIATE VACUUM MODULES                |                  |
| SERIES MI — GENERAL INFORMATION                                                    | PAG. 8.51        |
| INTERMEDIATE VACUUM MODULES MI 3 and MI 7                                          | PAG. 8.52        |
| DIAGRAMS REFERRING TO INTERMEDIATE VACUUM MODULES MI 3 and MI 7                    | PAG. 8.53        |
| INTERMEDIATE VACUUM MODULES MI 10 and MI 14                                        | PAG. 8.54        |
| DIAGRAMS REFERRING TO INTERMEDIATE VACUUM MODULES MI 10 and MI 14                  | PAG. 8.55        |
| ACCESSORIES AND SPARE PARTS FOR VACUUM GENERATORS AND MODULES SERIES GVMM AND MI   | PAG. 8.56 ÷ 8.58 |
| MODULAR VACUUM SYSTEMS SET-UP                                                      | PAG. 8.59        |
| SINGLE-STAGE AND MULTI-FUNCTION VACUUM GENERATORS SERIES AVG — GENERAL INFORMATION | PAG. 8.60        |
| GENERATORI DI VUOTO MONOSTADIO E MULTIFUNZIONE AVG 18 e AVG 25                     | PAG. 8.61        |
| DIAGRAMS REFERRING TO VACUUM GENERATORS AVG 18 e AVG 25                            | PAG. 8.62        |
|                                                                                    |                  |

PNEUMATIC VACUUM GENERATORS AND PUMPSETS

## PNEUMATIC VACUUM GENERATORS AND PUMPSETS

| ANG 13 P a AVG 25 P  VACUUM GENERATORS ACCESSORIES AND SPARE PARTS SERIES AVG  WALDIM GENERATORS ACCESSORIES AND SPARE PARTS SERIES AVG  MULTI-STAGE VACULUM GENERATORS PVP 12 MX and PVP 25 MX  PAG. 8.67  MULTI-STAGE VACULUM GENERATORS PVP 12 MX and PVP 25 MX  MULTI-STAGE VACULUM GENERATORS PVP 140 M, PVP 70 M and PVP 100 M  PAG. 8.68  MULTI-STAGE VACULUM GENERATORS PVP 140 M, PVP 170 M and PVP 100 M  PAG. 8.69  MULTI-STAGE VACULUM GENERATORS PVP 140 M, PVP 170 M and PVP 100 M  PAG. 8.69  MULTI-STAGE VACULUM GENERATORS PVP 140 M, PVP 170 M and PVP 200 M  PAG. 8.70  MULTI-STAGE VACULUM GENERATORS PVP 140 M, PVP 170 M and PVP 200 M  PAG. 8.71  MULTI-STAGE VACULUM GENERATORS PVP 140 M, PVP 170 M and PVP 200 M  PAG. 8.72  DIAGRAMS REFERRING TO VACULUM GENERATORS PVP 250 M and PVP 300 M  PAG. 8.72  DIAGRAMS REFERRING TO VACULUM GENERATORS PVP 250 M and PVP 300 M  PAG. 8.73  MULTI-STAGE VACULUM GENERATORS PVP 250 M AND VP 250 MDX and PVP 300 M  PAG. 8.74  MULTI-STAGE VACULUM GENERATORS PVP 260 MDX, PVP 35 MDX and PVP 300 MDX  PAG. 8.75  MULTI-STAGE VACULUM GENERATORS PVP 260 MDX PVP 250 MDX and PVP 300 MDX  PAG. 8.76  MULTI-STAGE VACULUM GENERATORS PVP 260 MDX AND PVP 35 MDX and PVP 35 MDX  PAG. 8.77  VACULUM GENERATORS ACCESSORIES PVP 25 ± 75 MDX  MULTI-STAGE VACULUM GENERATORS PVP 260 MDX and PVP 75 MDX  PAG. 8.78  MODULAR MULTI-STAGE VACULUM GENERATORS PVP 150 ± 600 MD — GENERAL INFORMATION  PAG. 8.81  MODULAR MULTI-STAGE VACULUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  MODULAR MULTI-STAGE VACULUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACULUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACULUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.85  ADJUSTABLE VACULUM GENERATORS PVP 450 MD and PVP 800 MD  PAG. 8.86  ADJUSTABLE VACULUM GENERATORS PVP 450 MD and PVP 800 MD  PAG. 8.89  PAG. 8.99  PA | SINGLE-STAGE AND MULTI-FUNCTION VACUUM GENERATORS WITH SHOCKPROOF PROTECTION |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------|
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  PAG. 8.87  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200  PAG. 8.89  ACCESSORIES FOR ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200  PAG. 8.91  FLOW GENERATORS VACUUM JET CX 7 and CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 73 and CX 10  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 and CX 10  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 and CX 10  PAG. 8.94  FLOW GENERATORS VACUUM JET CX 25, CX 38 and CX 50  PAG. 8.95  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 and CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 06 and DOP 10  PAG. 8.97  MINI PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 50  PAG. 8.102  PAG. 8.102  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 50  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 50  PAG. 8.104  PAG. 8.105  PAG. 8.106  PAG. 8.106                                                                                                           | AVIC 18 D a AVIC 25 D                                                        | DVC 8 63              |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD AND PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.80  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 AND CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 AND CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 AND CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 AND CX 50  PAG. 8.95  PLOW GENERATORS VACUUM JET CX 25, CX 38 AND CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 26  PAG. 8.99  PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.90  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 100  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 100  PAG. 8.101  PNEUMATIC PUMPSETS DOP 300  PAG. 8.102  PAG. 8.105  PAG. 8.105  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106                                                                                                                                                                                                                     | VACILIM CENERATORS ACCESSORIES AND SDARE DARTS SERIES AVG                    | PAG. 8.64 · 8.65      |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD AND PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.80  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 AND CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 AND CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 AND CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 AND CX 50  PAG. 8.95  PLOW GENERATORS VACUUM JET CX 25, CX 38 AND CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 26  PAG. 8.99  PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.90  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 100  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 100  PAG. 8.101  PNEUMATIC PUMPSETS DOP 300  PAG. 8.102  PAG. 8.105  PAG. 8.105  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106                                                                                                                                                                                                                     | MILITILSTAGE VACILIAM GENERATORS DVD 12 MY and DVD 25 MY                     | DAG 8 66              |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD AND PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.80  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 AND CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 AND CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 AND CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 AND CX 50  PAG. 8.95  PLOW GENERATORS VACUUM JET CX 25, CX 38 AND CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 26  PAG. 8.99  PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.90  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 100  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 100  PAG. 8.101  PNEUMATIC PUMPSETS DOP 300  PAG. 8.102  PAG. 8.105  PAG. 8.105  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106                                                                                                                                                                                                                     | DIACDAMS DECEDING TO VACILIM CENEDATORS DVD 12 MV and DVD 25 MV              | PAG. 0.00<br>DAG 9.67 |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD AND PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.80  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 AND CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 AND CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 AND CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 AND CX 50  PAG. 8.95  PLOW GENERATORS VACUUM JET CX 25, CX 38 AND CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 26  PAG. 8.99  PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.90  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 100  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 100  PAG. 8.101  PNEUMATIC PUMPSETS DOP 300  PAG. 8.102  PAG. 8.105  PAG. 8.105  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106                                                                                                                                                                                                                     | MILITI CTACE VACILIM CENEDATORS DVD 40 M. DVD 70 M and DVD 100 M             | PAG. 0.07             |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD AND PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.80  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 AND CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 AND CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 AND CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 AND CX 50  PAG. 8.95  PLOW GENERATORS VACUUM JET CX 25, CX 38 AND CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 26  PAG. 8.99  PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.90  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 100  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 100  PAG. 8.101  PNEUMATIC PUMPSETS DOP 300  PAG. 8.102  PAG. 8.105  PAG. 8.105  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106                                                                                                                                                                                                                     | MULTI-STAGE VACUUM GENERATURS PVP 40 MI, PVP 70 MI ATIU PVP 100 MI           | PAG. 8.08             |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  PAG. 8.87  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200  PAG. 8.89  ACCESSORIES FOR ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200  PAG. 8.91  FLOW GENERATORS VACUUM JET CX 7 and CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 73 and CX 10  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 and CX 10  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 and CX 10  PAG. 8.94  FLOW GENERATORS VACUUM JET CX 25, CX 38 and CX 50  PAG. 8.95  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 and CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 06 and DOP 10  PAG. 8.97  MINI PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 50  PAG. 8.102  PAG. 8.102  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 50  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 50  PAG. 8.104  PAG. 8.105  PAG. 8.106  PAG. 8.106                                                                                                           | DIAGRANIS REFERRING TO VACUUM GENERATORS PVP 40 M, PVP 70 M 200 M            | PAG. 8.69             |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD AND PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.80  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 AND CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 AND CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 AND CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 AND CX 50  PAG. 8.95  PLOW GENERATORS VACUUM JET CX 25, CX 38 AND CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 26  PAG. 8.99  PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.90  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 100  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 100  PAG. 8.101  PNEUMATIC PUMPSETS DOP 300  PAG. 8.102  PAG. 8.105  PAG. 8.105  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106                                                                                                                                                                                                                     | MULTI-STAGE VACUUM GENERATURS PVP 140 M, PVP 170 M and PVP 200 M             | PAG. 8.70             |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD AND PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.80  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 AND CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 AND CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 AND CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 AND CX 50  PAG. 8.95  PLOW GENERATORS VACUUM JET CX 25, CX 38 AND CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 26  PAG. 8.99  PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.90  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 100  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 100  PAG. 8.101  PNEUMATIC PUMPSETS DOP 300  PAG. 8.102  PAG. 8.105  PAG. 8.105  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106                                                                                                                                                                                                                     | DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 140 M, PVP 170 M and PVP 200 M   | PAG. 8.71             |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD AND PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.80  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 AND CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 AND CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 AND CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 AND CX 50  PAG. 8.95  PLOW GENERATORS VACUUM JET CX 25, CX 38 AND CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 26  PAG. 8.99  PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.90  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 100  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 100  PAG. 8.101  PNEUMATIC PUMPSETS DOP 300  PAG. 8.102  PAG. 8.105  PAG. 8.105  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106                                                                                                                                                                                                                     | MULTI-STAGE VACUUM GENERATORS PVP 250 M and PVP 300 M                        | PAG. 8.72             |
| DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.76  MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX  PAG. 8.77  VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  PAG. 8.78 ÷ 8.79  SILENCERS  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODILLAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD AND PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 AND PVR 50  PAG. 8.80  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 AND PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 AND CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 AND CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 AND CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 AND CX 50  PAG. 8.95  PLOW GENERATORS VACUUM JET CX 25, CX 38 AND CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 26  PAG. 8.99  PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 50  PAG. 8.90  PNEUMATIC PUMPSETS DOP 50  PAG. 8.101  PNEUMATIC PUMPSETS DOP 100  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 100  PAG. 8.101  PNEUMATIC PUMPSETS DOP 300  PAG. 8.102  PAG. 8.105  PAG. 8.105  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106  PAG. 8.106                                                                                                                                                                                                                     | DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 250 M and PVP 300 M              | PAG. 8.73             |
| MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX PAG. 8.77 VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX PAG. 8.77 VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX PAG. 8.80 MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD − GENERAL INFORMATION MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD PAG. 8.81 MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD PAG. 8.83 MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD PAG. 8.84 DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD PAG. 8.84 DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD PAG. 8.84 DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD PAG. 8.86 DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 250 AD PVR 250 DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50 PAG. 8.86 DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50 PAG. 8.87 ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200 PAG. 8.89 DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200 PAG. 8.89 LOCESSORIES FOR ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200 PAG. 8.90 FLOW GENERATORS VACUUM JET CX 7 and CX 10 PAG. 8.91 DIAGRAMS REFERRING TO PLOW GENERATORS CX 7 and CX 10 PAG. 8.92 FLOW GENERATORS VACUUM JET CX 13 and CX 19 PAG. 8.93 DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 and CX 50 PAG. 8.96 MINI PNEUMATIC PUMPSETS DOP 06 and DOP 10 MINI PNEUMATIC PUMPSETS DOP 20 PAG. 8.97 MINI PNEUMATIC PUMPSETS DOP 25 PAG. 8.99 PNEUMATIC PUMPSETS DOP 50 PAG. 8.101 PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103 PNEUMATIC PUMPSETS DOP 150 PAG. 8.105 PAG. 8.105 PAG. 8.106                                                                                                                                                                                                                                             | MULTI-STAGE VACUUM GENERATORS PVP 25 MDX, PVP 35 MDX and PVP 50 MDX          | PAG. 8.74             |
| MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX PAG. 8.77 VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX PAG. 8.77 VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX PAG. 8.80 MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 ± 600 MD — GENERAL INFORMATION PAG. 8.81 MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD PAG. 8.82 DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD PAG. 8.83 MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD PAG. 8.84 DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 300 MD PAG. 8.84 DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD PAG. 8.86 DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD PAG. 8.86 DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 25 and PVR 50 PAG. 8.86 DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50 PAG. 8.87 ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200 PAG. 8.89 DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200 PAG. 8.89 DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200 PAG. 8.89 FLOW GENERATORS VACUUM JET CX 7 and CX 10 PAG. 8.91 DIAGRAMS REFERRING TO PLOW GENERATORS CX 7 and CX 10 PAG. 8.92 FLOW GENERATORS VACUUM JET CX 13 and CX 19 PAG. 8.93 DIAGRAMS REFERRING TO PLOW GENERATORS CX 13 and CX 19 PAG. 8.94 FLOW GENERATORS VACUUM JET CX 25, CX 38 and CX 50 PAG. 8.95 DIAGRAMS REFERRING TO PLOW GENERATORS CX 25, CX 38 and CX 50 PAG. 8.96 MINI PNEUMATIC PUMPSETS DOP 20 PAG. 8.97 MINI PNEUMATIC PUMPSETS DOP 20 PAG. 8.99 PNEUMATIC PUMPSETS DOP 50 PAG. 8.101 PNEUMATIC PUMPSETS DOP 150 PAG. 8.101 PNEUMATIC PUMPSETS DOP 300 PAG. 8.102 PNEUMATIC PUMPSETS DOP 150 PAG. 8.103 PNEUMATIC PUMPSETS DOP 25, 50 e 100 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300                                                                                                                                                       | DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 25 MDX, PVP 35 MDX and PVP 50MDX | PAG. 8.75             |
| VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX  SILENCERS  PAG. 8.80  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD – GENERAL INFORMATION  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.81  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  PAG. 8.86  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  PAG. 8.87  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  PAG. 8.87  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200  PAG. 8.88  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200  PAG. 8.89  ACCESSORIES FOR ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 and CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 and CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 and CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 and CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 and CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 06 and DOP 10  MINI PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 26  PAG. 8.90  PNEUMATIC PUMPSETS DOP 150  PAG. 8.100  PNEUMATIC PUMPSETS DOP 300  PAG. 8.101  PNEUMATIC PUMPSET AND PUMPSET COMPONENTS:  MINI PNEUMATIC PUMPSET AND PUMPSET COMPONENTS:  MINI PNEUMATIC PUMPSET DOP 25, 50 e 100  TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100  TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300                                                                                                                                                                                                                                                                                                                                       | MULTI-STAGE VACUUM GENERATORS PVP 60 MDX and PVP 75 MDX                      | PAG. 8.76             |
| SILENCERS  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD — GENERAL INFORMATION  PAG. 8.81  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.82  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD  PAG. 8.83  MODULAR MULTI-STAGE VACUUM GENERATORS PVP 450 MD and PVP 300 MD  PAG. 8.84  DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD  PAG. 8.85  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVP 250 MD and PVP 600 MD  PAG. 8.86  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  PAG. 8.87  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50  PAG. 8.87  ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 200  PAG. 8.89  DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 200  PAG. 8.89  ACCESSORIES FOR ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200  PAG. 8.90  FLOW GENERATORS VACUUM JET CX 7 and CX 10  PAG. 8.91  DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 and CX 10  PAG. 8.92  FLOW GENERATORS VACUUM JET CX 13 and CX 19  PAG. 8.93  DIAGRAMS REFERRING TO FLOW GENERATORS CX 73 and CX 19  PAG. 8.94  FLOW GENERATORS VACUUM JET CX 23 and CX 50  PAG. 8.95  DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 and CX 50  PAG. 8.96  MINI PNEUMATIC PUMPSETS DOP 06 and DOP 10  PAG. 8.97  MINI PNEUMATIC PUMPSETS DOP 25  PAG. 8.99  PNEUMATIC PUMPSETS DOP 26  PAG. 8.100  PAG. 8.101  PNEUMATIC PUMPSETS DOP 150  PAG. 8.102  PAG. 8.102  PAG. 8.103  PNEUMATIC PUMPSETS DOP 150  PAG. 8.105  TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100  TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                       |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX                                | PAG. 8.78 ÷ 8.79      |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SILENCERS                                                                    | PAG. 8.80             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD — GENERAL INFORMATION | PAG. 8.81             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and PVP 300 MD              | PAG. 8.82             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 150 MD and PVP 300 MD            | PAG. 8.83             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MODULAR MULTI-STAGE VACUUM GENERATORS PVP 450 MD and PVP 600 MD              | PAG. 8.84             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIAGRAMS REFERRING TO VACUUM GENERATORS PVP 450 MD and PVP 600 MD            | PAG. 8.85             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50                      | PAG. 8.86             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 25 and PVR 50           | PAG. 8.87             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADJUSTABLE VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200                    | PAG. 8.88             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIAGRAMS REFERRING TO VACUUM GENERATORS CONVEYOR PVR 100 and PVR 200         | PAG. 8.89             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACCESSORIES FOR ADJUSTABLE VACUUM GENERATORS CONVEYOR                        | PAG. 8.90             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FLOW GENERATORS VACUUM JET CX 7 and CX 10                                    | PAG. 8.91             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIAGRAMS REFERRING TO FLOW GENERATORS CX 7 and CX 10                         | PAG. 8.92             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FLOW GENERATORS VACUUM JET CX 13 and CX 19                                   | PAG. 8.93             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIAGRAMS REFERRING TO FLOW GENERATORS CX 13 and CX 19                        | PAG. 8.94             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FLOW GENERATORS VACUUM JET CX 25, CX 38 and CX 50                            | PAG. 8.95             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIAGRAMS REFERRING TO FLOW GENERATORS CX 25, CX 38 and CX50                  | PAG. 8.96             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MINI PNEUMATIC PUMPSETS DOP 06 and DOP 10                                    | PAG. 8.97             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MINI PNEUMATIC PUMPSETS DOP 20                                               | PAG. 8.98             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNFLIMATIC PLIMPSETS DOP 25                                                  | PAG. 8.99             |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNFLIMATIC PLIMPSETS DOP 50                                                  | PAG. 8.100            |
| PNEUMATIC PUMPSETS DOP 150 PAG. 8.102 PNEUMATIC PUMPSETS DOP 300 PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS: MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 PAG. 8.105 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNFLIMATIC PLIMPSETS DOP 100                                                 | PAG. 8.101            |
| PNEUMATIC PUMPSETS DOP 300  PAG. 8.103  PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS:  MINI PNEUMATIC PUMPSET TANKS  TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100  TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300  PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |                       |
| PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS:  MINI PNEUMATIC PUMPSET TANKS  TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100  TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300  PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                       |
| MINI PNEUMATIC PUMPSET TANKS PAG. 8.104 TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100 TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              | 171d. 0.100           |
| TANKS FOR PNEUMATIC PUMPSET DOP 25, 50 e 100  TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300  PAG. 8.105  PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                       |
| TANKS FOR PNEUMATIC PUMPSET DOP 150 e 300 PAG. 8.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                       |
| PNEUMATIC CONTROL GEAR FOR MINI PUMPSETS AND PUMPSETS PAG. $8.107 \div 8.108$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PNEUMATIC CONTROL GEAR FOR MINI PUMPSETS AND PUMPSETS                        | PAG. 8.107 ÷ 8.108    |

3D drawings available at www.vuototecnica.net

|   | ۰  | × |
|---|----|---|
|   | 'n | Ġ |
|   | ч  |   |
|   | õ  |   |
|   | ≥  |   |
|   |    |   |
|   | м  | = |
|   | 61 | u |
|   | ë  | 4 |
|   | ч  | • |
| = | =  |   |
|   | e  |   |
|   | 7  | ŧ |
|   |    |   |
|   | ž  |   |
|   | ₫  | L |
|   | Ξ  |   |
| ۰ | 7  | Ξ |
|   | c  |   |
| ı | Ξ  | 5 |
| ۰ | •  | • |
|   | е  | 3 |
|   | 3  | • |
|   | =  | 5 |
|   | =  |   |
|   | =  | 3 |
|   | ,  | 7 |
|   | -  | d |
|   | e  | 7 |
|   | ₽  | 3 |
|   | 5  |   |
|   | e  | 3 |
|   | ₽  | 3 |
|   |    | 9 |
|   | ×  |   |
|   | e. | 3 |
|   |    |   |
| ٠ | ٠  | - |
|   | Ġ  | • |
|   | 6  | 4 |
|   |    |   |
|   | а  | ľ |
|   | _  |   |
|   | -  | - |
|   | 2  |   |
|   | ~  |   |
|   | 6  | Ļ |
| : | Ξ  |   |
|   | Ξ  | Ξ |
|   | C  |   |
|   | -  | S |
|   | =  | _ |
|   | C  | Ξ |
|   |    |   |
|   |    | _ |
|   | v  |   |
|   | 7  | j |
|   | •  | - |
|   | c  | Ξ |
|   | =  |   |
|   | -  | 5 |
|   | <  | S |
|   | -  | _ |
|   | C  | ζ |
|   | 4  | 1 |
| ı | *  |   |
| 1 | 2  | 2 |
|   |    |   |
|   | _  | , |
|   |    | ٦ |
| d | -  |   |
| ¢ | γ, | G |
|   |    |   |

| Art                      |                          |                      |        |                 |       | -              |                | different va   | cuum levels | (-KPa) |              |                          |
|--------------------------|--------------------------|----------------------|--------|-----------------|-------|----------------|----------------|----------------|-------------|--------|--------------|--------------------------|
| Art<br>Generator         | Supply press.<br>bar (g) | Air consumption NI/s | 0      | 10              | 20    | 30             | 40             | 50             | 60          | 70     | 80           | Max. vacuum leve<br>-KPa |
| 15 01 10                 | 6                        | 0.9                  | 0.77   | 0.66            | 0.61  | 0.55           | 0.44           | 0.29           | 0.19        | 0.09   |              | 83                       |
| 15 02 10                 | 6                        | 0.9                  | 0.77   | 0.66            | 0.61  | 0.55           | 0.44           | 0.29           | 0.19        | 0.09   |              | 83                       |
| 15 03 10                 | 6                        | 1.8                  | 1.39   | 1.30            | 1.15  | 1.00           | 0.89           | 0.77           | 0.69        | 0.44   | 0.04         | 85                       |
| 15 04 10                 | 6                        | 1.8                  | 1.39   | 1.30            | 1.15  | 1.00           | 0.89           | 0.77           | 0.69        | 0.44   | 0.04         | 85                       |
| PVP 1                    | 5                        | 0.8                  | 0.27   | 0.25            | 0.22  | 0.18           | 0.12           | 0.07           | 0.06        | 0.03   | 0.004        | 85                       |
| PVP 2                    | 6                        | 1.0                  | 0.83   | 0.70            | 0.65  | 0.52           | 0.37           | 0.23           | 0.13        | 0.07   | 0.007        | 85                       |
| PVP 2 M                  | 6                        | 1.0                  | 0.83   | 0.70            | 0.65  | 0.52           | 0.37           | 0.23           | 0.13        | 0.07   | 0.007        | 85                       |
| PVP 3                    | 6                        | 1.5                  | 1.03   | 0.82            | 0.72  | 0.61           | 0.41           | 0.24           | 0.15        | 0.08   | 0.008        | 85                       |
| PVP 7 X                  | 6                        | 3.2                  | 2.47   | 2.28            | 2.10  | 1.94           | 1.44           | 0.97           | 0.86        | 0.54   | 0.05         | 85                       |
| PVP 7 SX                 | 6                        | 3.2                  | 2.47   | 2.28            | 2.10  | 1.94           | 1.44           | 0.97           | 0.86        | 0.54   | 0.05         | 85                       |
| GV 1                     | 5                        | 0.7                  | 0.27   | 0.23            | 0.20  | 0.17           | 0.13           | 0.06           | 0.05        | 0.03   | 0.004        | 85                       |
| GV 2                     | 5                        | 0.7                  | 0.27   | 0.23            | 0.20  | 0.17           | 0.13           | 0.06           | 0.05        | 0.03   | 0.004        | 85                       |
| GV 3                     | 5                        | 0.7                  | 0.27   | 0.23            | 0.20  | 0.17           | 0.13           | 0.06           | 0.05        | 0.03   | 0.004        | 85                       |
| M 3 - M 3 SSX            | 5                        | 0.8                  | 1.00   | 0.83            | 0.61  | 0.34           | 0.18           | 0.12           | 0.10        | 0.07   | 0.03         | 85                       |
| M 7 - M 7 SSX            | 5                        | 1.4                  | 1.72   | 1.28            | 0.89  | 0.50           | 0.37           | 0.27           | 0.16        | 0.11   | 0.05         | 85                       |
| M 10 - M 10 SSX          |                          | 1.9                  | 2.61   | 2.00            | 1.55  | 0.80           | 0.64           | 0.50           | 0.29        | 0.19   | 0.09         | 85                       |
| M 14 - M 14 SSX          |                          | 2.5                  | 3.50   | 2.33            | 1.72  | 1.00           | 0.89           | 0.67           | 0.35        | 0.24   | 0.11         | 85                       |
| M 18 - M 18 SSX          |                          | 3.6                  | 5.00   | 3.50            | 2.78  | 2.02           | 1.02           | 0.75           | 0.44        | 0.30   | 0.14         | 85                       |
| MVG 3                    | 5                        | 0.8                  | 0.89   | 0.69            | 0.41  | 0.23           | 0.18           | 0.73           | 0.10        | 0.07   | 0.03         | 85                       |
| MVG 7                    | 5                        | 1.3                  | 1.83   | 1.44            | 1.11  | 0.63           | 0.16           | 0.12           | 0.16        | 0.07   | 0.05         | 85                       |
| MVG10                    | 5                        | 1.3                  | 2.55   | 1.85            | 1.30  | 0.03           | 0.41           | 0.23           | 0.10        | 0.11   | 0.05         | 85                       |
| MVG14                    |                          | 2.1                  |        |                 |       |                |                |                |             | 0.20   |              |                          |
|                          | 5                        |                      | 3.40   | 2.45            | 1.84  | 1.05           | 0.88           | 0.61           | 0.36        |        | 0.11         | 85                       |
| GVMM 3                   | 5                        | 0.8                  | 0.83   | 0.66            | 0.38  | 0.20           | 0.16           | 0.11           | 0.09        | 0.06   | 0.02         | 85                       |
| GVMM 7                   | 5                        | 1.3                  | 1.78   | 1.30            | 0.98  | 0.56           | 0.44           | 0.29           | 0.20        | 0.14   | 0.06         | 85                       |
| GVMM 10                  | 5                        | 1.7                  | 2.52   | 2.00            | 1.66  | 0.97           | 0.56           | 0.40           | 0.22        | 0.16   | 0.07         | 85                       |
| GVMM 14                  | 5                        | 2.1                  | 3.35   | 2.42            | 1.84  | 0.99           | 0.80           | 0.58           | 0.34        | 0.22   | 0.10         | 85                       |
| MI 3                     | 5                        | 0.8                  | 0.83   | 0.66            | 0.38  | 0.20           | 0.16           | 0.11           | 0.09        | 0.06   | 0.02         | 85                       |
| MI 7                     | 5                        | 1.3                  | 1.78   | 1.30            | 0.98  | 0.56           | 0.44           | 0.29           | 0.20        | 0.14   | 0.06         | 85                       |
| MI 10                    | 5                        | 1.7                  | 2.52   | 2.00            | 1.66  | 0.97           | 0.56           | 0.40           | 0.22        | 0.16   | 0.07         | 85                       |
| MI 14                    | 5                        | 2.1                  | 3.35   | 2.42            | 1.84  | 0.99           | 0.80           | 0.58           | 0.34        | 0.22   | 0.10         | 85                       |
| AVG 18                   | 6                        | 6.4                  | 4.83   | 4.58            | 4.04  | 3.58           | 2.72           | 1.90           | 1.68        | 1.07   | 0.10         | 85                       |
| AVG 25                   | 6                        | 9.6                  | 7.00   | 6.63            | 5.86  | 5.18           | 3.94           | 2.76           | 2.44        | 1.54   | 0.15         | 85                       |
| PVP 12 MX                | 6                        | 1.8                  | 5.80   | 4.14            | 2.76  | 1.38           | 0.98           | 0.78           | 0.59        | 0.41   | 0.23         | 90                       |
| PVP 25 MX                | 6                        | 3.2                  | 8.61   | 6.15            | 4.10  | 2.05           | 1.46           | 1.17           | 0.88        | 0.61   | 0.35         | 90                       |
| PVP 40 M                 | 6                        | 3.2                  | 11.66  | 8.32            | 5.55  | 2.77           | 1.98           | 1.58           | 1.19        | 0.83   | 0.47         | 90                       |
| PVP 70 M                 | 6                        | 6.6                  | 22.22  | 15.87           | 10.58 | 5.29           | 3.77           | 3.02           | 2.27        | 1.58   | 0.90         | 90                       |
| PVP 100 M                | 6                        | 9.8                  | 30.00  | 21.42           | 14.28 | 7.14           | 5.10           | 4.08           | 3.06        | 2.14   | 1.22         | 90                       |
| PVP 140 M                | 6                        | 13.0                 | 42.22  | 30.15           | 20.10 | 10.05          | 7.18           | 5.74           | 4.31        | 3.02   | 1.72         | 90                       |
| PVP 170 M                | 6                        | 16.3                 | 50.55  | 36.10           | 24.07 | 12.03          | 8.59           | 6.87           | 5.17        | 3.61   | 2.06         | 90                       |
| PVP 200 M                | 6                        | 19.4                 | 55.55  | 39.67           | 26.45 | 13.22          | 9.44           | 7.55           | 5.68        | 3.97   | 2.27         | 90                       |
| PVP 250 M                | 6                        | 24.0                 | 77.77  | 55.55           | 37.03 | 18.51          | 13.22          | 10.58          | 7.95        | 5.56   | 3.17         | 90                       |
| PVP 300 M                | 6                        | 29.0                 | 88.88  | 63.48           | 42.32 | 21.16          | 15.11          | 12.09          | 9.09        | 6.35   | 3.63         | 90                       |
| PVP 25 MDX               | 6                        | 3.2                  | 11.94  | 8.53            | 5.68  | 2.84           | 2.03           | 1.62           | 1.22        | 0.85   | 0.48         | 90                       |
| PVP 35 MDX               | 6                        | 4.8                  | 15.83  | 11.30           | 7.53  | 3.76           | 2.69           | 2.15           | 1.61        | 1.13   | 0.64         | 90                       |
| PVP 50 MDX               | 6                        | 6.5                  | 18.88  | 13.48           | 8.99  | 4.49           | 3.21           | 2.56           | 1.93        | 1.35   | 0.77         | 90                       |
| PVP 60 MDX               | 6                        | 8.2                  | 25.55  | 18.25           | 12.16 | 6.08           | 4.34           | 3.47           | 2.61        | 1.82   | 1.04         | 90                       |
| PVP 75 MDX               | 6                        | 9.8                  | 28.61  | 20.43           | 13.62 | 6.81           | 4.86           | 3.89           | 2.92        | 2.04   | 1.16         | 90                       |
| PVP 150 MD               | 6                        | 16.0                 | 55.55  | 39.68           | 26.45 | 13.22          | 9.44           | 7.55           | 5.68        | 3.97   | 2.27         | 90                       |
| PVP 300 MD               | 6                        | 32.0                 | 111.11 | 79.36           | 52.91 | 26.45          | 18.89          | 15.11          | 11.36       | 7.94   | 4.54         | 90                       |
| PVP 450 MD               |                          | 32.0<br>47.8         | 161.11 | 79.30<br>115.07 | 76.71 | 38.35          |                |                | 16.48       | 11.52  |              | 90                       |
| PVP 450 MD<br>PVP 600 MD | 6                        | 47.8<br>63.2         | 208.33 | 148.80          | 99.20 | 38.35<br>49.60 | 27.39<br>35.43 | 21.91<br>28.34 | 21.31       | 14.90  | 6.58<br>8.51 | 90                       |

TABLE REGARDING THE QUANTITY OF AIR SUCKED BY GENERATORS

AT DIFFERENT VACUUM LEVELS

## TABLE REGARDING VACUUM GENERATOR EVACUATION TIME, AT DIFFERENT VACUUM LEVELS

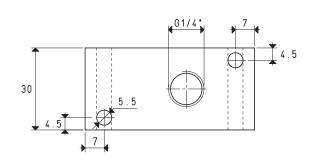
| Art.              |         |                   |           |      |            | Evacuation tin | -           | m³) at differe |       | vels (-KPa) |       |       |
|-------------------|---------|-------------------|-----------|------|------------|----------------|-------------|----------------|-------|-------------|-------|-------|
| Art.<br>Generator |         | Max. vacuum level | 10        | 20   | 30         | 40             | 50          | 60             | 70    | 80          | 85    | 90    |
|                   | bar (g) | -KPa              |           |      |            |                |             |                |       |             |       |       |
| 15 01 10          | 6       | 82                | 139       | 278  | 472        | 727            | 1171        | 1628           | 2720  | 4928        |       |       |
| 15 02 10          | 6       | 82                | 139       | 278  | 472        | 727            | 1171        | 1628           | 2720  | 4928        |       |       |
| 15 03 10          | 6       | 85                | 77        | 154  | 261        | 403            | 649         | 902            | 1506  | 2730        | 3876  |       |
| I5 04 10          | 6       | 85                | 77        | 154  | 261        | 403            | 649         | 902            | 1506  | 2730        | 3876  |       |
| PVP 1             | 5       | 85                | 393       | 786  | 1336       | 2057           | 3312        | 4605           | 7690  | 13935       | 19787 |       |
| PVP 2             | 6       | 85                | 128       | 257  | 438        | 675            | 1087        | 1511           | 2523  | 4572        | 6492  |       |
| PVP 2 M           | 6       | 85                | 128       | 257  | 438        | 675            | 1087        | 1511           | 2523  | 4572        | 6492  |       |
| PVP 3             | 6       | 85                | 104       | 207  | 353        | 544            | 875         | 1217           | 2033  | 3684        | 5232  |       |
| PVP 7 X           | 6       | 85                | 43        | 86   | 147        | 226            | 365         | 507            | 847   | 1536        | 2181  |       |
| PVP 7 SX          | 6       | 85                | 43        | 86   | 147        | 226            | 365         | 507            | 847   | 1536        | 2181  |       |
| GV 1              | 5       | 85                | 394       | 788  | 1339       | 2063           | 3322        | 4617           | 7711  | 13973       | 19841 |       |
| GV 2              | 5       | 85                | 394       | 788  | 1339       | 2063           | 3322        | 4617           | 7711  | 13973       | 19841 |       |
| GV 3              | 5       | 85                | 394       | 788  | 1339       | 2063           | 3322        | 4617           | 7711  | 13973       | 19841 |       |
| M 3 - M 3 SSX     | 5       | 85                | 106       | 244  | 491        | 969            | 1642        | 2398           | 4004  | 7128        | 10122 |       |
| M 7 - M 7 SSX     | 5       | 85                | 61        | 142  | 285        | 563            | 954         | 1394           | 2328  | 4144        | 5885  |       |
| M 10 - M 10 SSX   |         | 85                | 40        | 93   | 188        | 371            | 629         | 918            | 1534  | 2731        | 3878  |       |
| M 14 - M 14 SSX   |         | 85                | 30        | 69   | 140        | 276            | 469         | 685            | 1144  | 2036        | 2892  |       |
| M 18 - M 18 SSX   |         | 85                | 21        | 48   | 98         | 193            | 327         | 478            | 799   | 1423        | 2020  |       |
| MVG 3             | 5       | 85                | 119       | 274  | 552        | 1088           | 1845        | 2694           | 4499  | 8009        | 11373 |       |
| MVG 7             | 5       | 85                | 58        | 133  | 268        | 529            | 897         | 1310           | 2188  | 3895        | 5531  |       |
| MVG 10            | 5       | 85                | 41        | 95   | 192        | 379            | 642         | 938            | 1567  | 2790        | 3962  |       |
| MVG 14            | 5       | 85                | 31        | 71   | 144        | 284            | 482         | 704            | 1175  | 2092        | 2971  |       |
| GVMM 3            | 5       | 85                | 128       | 294  | 592        | 1167           | 1978        | 2889           | 4824  | 8588        | 12195 |       |
| GVMM 7            | 5       | 85                | 59        | 137  | 275        | 543            | 921         | 1344           | 2245  | 3997        | 5676  |       |
| GVMM 10           | 5       | 85                | 42        | 97   | 195        | 384            | 651         | 951            | 1589  | 2828        | 4016  |       |
| GVMM 14           | 5       | 85                | 31        | 72   | 146        | 288            | 489         | 714            | 1193  | 2124        | 3016  |       |
|                   | 5       |                   |           |      |            |                |             |                |       |             |       |       |
| MI 3<br>MI 7      | 5       | 85<br>85          | 128<br>59 | 294  | 592<br>275 | 1167           | 1978<br>921 | 2889           | 4824  | 8588        | 12195 |       |
|                   |         |                   |           | 137  |            | 543            |             | 1344           | 2245  | 3997        | 5676  |       |
| MI 10             | 5       | 85                | 42        | 97   | 195        | 384            | 651         | 951            | 1589  | 2828        | 4016  |       |
| MI 14             | 5       | 85                | 31        | 72   | 146        | 288            | 489         | 714            | 1193  | 2124        | 3016  |       |
| AVG 18            | 6       | 85                | 22        | 44   | 75         | 115            | 185         | 258            | 430   | 798         | 1107  |       |
| AVG 25            | 6       | 85                | 15        | 30   | 52         | 80             | 128         | 178            | 297   | 538         | 764   | =0.40 |
| PVP 12 MX         | 6       | 90                | 15.4      | 38.7 | 85.1       | 204.4          | 365.9       | 559.8          | 929.4 | 1607.8      |       | 5916  |
| PVP 25 MX         | 6       | 90                | 10.4      | 26.0 | 57.3       | 137.7          | 246.5       | 377.1          | 626.0 | 1083.1      |       | 3986  |
| PVP 40 M          | 6       | 90                | 7.7       | 19.2 | 42.3       | 101.6          | 182.0       | 278.4          | 462.3 | 799.8       |       | 2943  |
| PVP 70 M          | 6       | 90                | 4.0       | 10.1 | 22.2       | 53.3           | 95.5        | 146.1          | 242.6 | 419.7       |       | 1544  |
| PVP 100 M         | 6       | 90                | 3.0       | 7.4  | 16.4       | 39.5           | 70.7        | 108.2          | 179.6 | 310.8       |       | 1144  |
| PVP 140 M         | 6       | 90                | 2.1       | 5.3  | 11.7       | 28.0           | 50.2        | 76.9           | 127.6 | 220.8       |       | 812   |
| PVP 170 M         | 6       | 90                | 1.7       | 4.4  | 9.7        | 23.4           | 42.0        | 64.2           | 106.6 | 184.5       |       | 678   |
| PVP 200 M         | 6       | 90                | 1.6       | 4.0  | 8.9        | 21.3           | 38.2        | 58.4           | 97.0  | 167.8       |       | 618   |
| PVP 250 M         | 6       | 90                | 1.1       | 2.9  | 6.4        | 15.2           | 27.3        | 41.8           | 69.3  | 119.9       |       | 442   |
| PVP 300 M         | 6       | 90                | 1.0       | 2.5  | 5.5        | 13.3           | 23.8        | 36.5           | 60.6  | 104.9       |       | 386   |
| PVP 25 MDX        | 6       | 90                | 7.5       | 18.8 | 41.3       | 99.3           | 177.7       | 271.9          | 451.4 | 781.0       |       | 2874  |
| PVP 35 MDX        | 6       | 90                | 5.6       | 14.1 | 31.2       | 74.9           | 134.0       | 205.1          | 340.5 | 589.1       |       | 2168  |
| PVP 50 MDX        | 6       | 90                | 4.7       | 11.9 | 26.2       | 62.8           | 112.4       | 172.0          | 285.5 | 494.0       |       | 1818  |
| PVP 60 MDX        | 6       | 90                | 3.5       | 8.8  | 19.3       | 46.4           | 83.0        | 127.0          | 211.0 | 365.0       |       | 1343  |
| PVP 75 MDX        | 6       | 90                | 3.1       | 7.8  | 17.2       | 41.4           | 74.2        | 113.5          | 188.4 | 326.0       |       | 1200  |
| PVP 150 MD        | 6       | 90                | 1.6       | 4.0  | 8.9        | 21.3           | 38.2        | 58.4           | 97.0  | 167.8       |       | 618   |
| PVP 300 MD        | 6       | 90                | 0.8       | 2.0  | 4.4        | 10.6           | 19.1        | 29.2           | 48.5  | 83.9        |       | 309   |
| PVP 450 MD        | 6       | 90                | 0.5       | 1.4  | 3.0        | 7.4            | 13.2        | 20.1           | 33.5  | 57.9        |       | 213   |
| PVP 600 MD        | 6       | 90                | 0.4       | 1.0  | 2.4        | 5.7            | 10.2        | 15.6           | 25.9  | 44.8        |       | 16    |

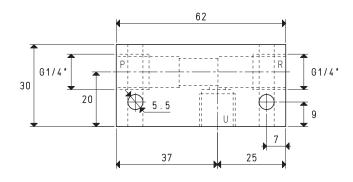
### MINIMUM PIPE INTERNAL DIAMETER RECOMMENDED FOR THE GENERATORS

Choosing the right fittings and pipe sections is essential for the correct operation of the vacuum plant. To obtain the highest performance by the vacuum generators, please see the temperature below and keep to the data shown in it.

| <b>I</b>       |                 | Compressed air  | Vacuum          | Exhaust         |
|----------------|-----------------|-----------------|-----------------|-----------------|
| acuum genera   | tor             | Pipe internal Ø | Pipe internal Ø | Pipe internal Ø |
| t.             |                 | mm              | mm              | mm              |
| 01 10          |                 | 2               | 6               | 8               |
| 02 10          |                 | 2               | 6               | 8               |
| 03 10          |                 | 2               | 8               | 10              |
| 04 10          |                 | 2               | 8               | 10              |
| P 1            |                 | 2               | 4               | =               |
| P 2            |                 | 2               | 6               | 8               |
| P 2 M          |                 | 2               | 6               | 8               |
| P 3            |                 | 2               | 6               | 8               |
| P 7 X          |                 | 4               | 10              | =               |
| P 7 SX         |                 | 4               | 10              | =               |
| 1              |                 | 2               | 4               | 6               |
| 2              |                 | 2               | 4               | 6               |
| 3              |                 | 2               | 4               | 6               |
| 3 - M 3 SSX    |                 | 2               | 6               | =               |
| 7 - M 7 SSX    |                 | 2               | 8               | =               |
| 10 - M 10 SS   | Х               | 4               | 10              | =               |
| 14 - M 14 SS   |                 | 4               | 12              | =               |
| 18 - M 18 SS   |                 | 4               | 15              | =               |
| /G 3           |                 | 2               | 6               | =               |
| VG 7           |                 | 2               | 8               | =               |
| VG 10          |                 | 4               | 10              | =               |
| /G 14          |                 | 4               | 12              | =               |
| MM 3           |                 | 2               | 6               |                 |
| MM 7           |                 | 2               | 8               | =               |
| /MM 10         |                 |                 |                 | =               |
|                |                 | 4               | 10              | =               |
| MM 14          |                 | 4               | 12              | =               |
| 3              |                 | 2               | 6               | =               |
| 7              |                 | 2               | 8               | =               |
| 10             |                 | 4               | 10              | =               |
| 14             |                 | 4               | 12              | =               |
| G 18           |                 | 8               | 15              | =               |
| G 25           |                 | 9               | 15              | =               |
| P 12 MX        |                 | 4               | 12              | 14              |
| P 25 MX        |                 | 4               | 15              | 6 x 4 pipes     |
|                | PA 40 - PS 40   | 6               | 27              | =               |
|                | PA 70 - PS 70   | 8               | 27              | =               |
|                | PA 100 - PS 100 | 9               | 27              | =               |
|                | PA 140 - PS 140 | 9               | 35              | =               |
|                | PA 170 - PS 170 | 12              | 35              | =               |
| P 200 M        | PA 200 - PS 200 | 12              | 40              | =               |
| /P 250 M       | PA 250 - PS 250 | 12              | 40              | =               |
| P 300 M        | PA 300 - PS 300 | 12              | 50              | =               |
| P 25 MDX       |                 | 6               | 27              | =               |
| P 35 MDX       |                 | 6               | 27              | =               |
| P 50 MDX       |                 | 6               | 27              | =               |
| P 60 MDX       |                 | 8               | 27              | =               |
| P 75 MDX       |                 | 8               | 27              | =               |
| P 150 MD       |                 | 12              | 35              |                 |
| P 300 MD       |                 | 12              | 40              | =               |
| P 450 MD       |                 | 16              | 50              |                 |
| P 600 MD       |                 | 18              | 60              |                 |
| F V F OUU IVID |                 | 10              | 00              | =               |

Single-stage vacuum generator operation is based on the Venturi principle.

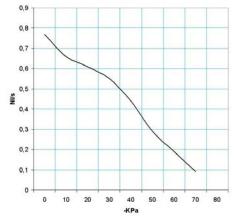

Supplying the generator with compressed air in P, vacuum will be generated at connection U, while both the supply and the sucked air will be released through R.


By interrupting the air supply in P, the vacuum effect in U will also stop.

Vacuum generators 15 01 10 and 15 03 10 are generally used for controlling vacuum cups, for gripping and handling non-porous objects and equipment with low capacity requirements.

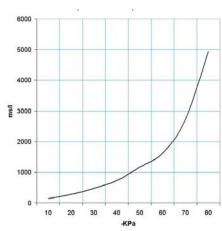
They are fully made with anodised aluminium.







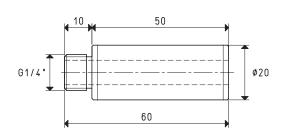




| P=COMPRESSED AIR CONNECTION R=EX | (HAUST U=VACUUM CONNECTI | ON  |          | O .       |
|----------------------------------|--------------------------|-----|----------|-----------|
| Art.                             |                          |     | 15 01 10 |           |
| Quantity of sucked air           | cum/h                    | 2.7 | 2.8      | 2.8       |
| Max. vacuum level                | -KPa                     | 55  | 70       | 83        |
| Final pressure                   | mbar abs.                | 450 | 300      | 170       |
| Supply pressure                  | bar (g)                  | 4   | 5        | 6         |
| Air consumption                  | NI/s                     | 0.7 | 0.8      | 0.9       |
| Working temperature              | °C                       |     |          | -20 / +80 |
| Noise level                      | dB(A)                    |     |          | 63        |
| Weight                           | g                        |     |          | 140       |

### Air capacity (NI/s) at different vacuum levels (-Kpa)

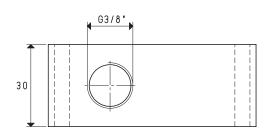


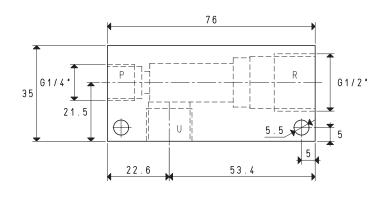
| Generator | Supply press. | Air consumption | Air capacity (NI/s) at different vacuum levels (-KPa)  Max. vacuum level |      |      |      |      |      |      |      |    | Max. vacuum level |
|-----------|---------------|-----------------|--------------------------------------------------------------------------|------|------|------|------|------|------|------|----|-------------------|
| art.      | bar (g)       | NI/s            | 0                                                                        | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80 | -KPa              |
| 15 01 10  | 6.0           | 0.9             | 0.77                                                                     | 0.66 | 0.61 | 0.55 | 0.44 | 0.29 | 0.19 | 0.09 |    | 83                |


### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption | [   | Evacuation : | Max. vacuum level |     |      |      |      |      |      |
|-----------|---------------|-----------------|-----|--------------|-------------------|-----|------|------|------|------|------|
| art.      | bar (g)       | NI/s            | 10  | 20           | 30                | 40  | 50   | 60   | 70   | 80   | -KPa |
| 15 01 10  | 6.0           | 0.9             | 139 | 278          | 472               | 727 | 1171 | 1628 | 2720 | 4928 | 83   |

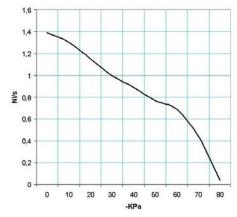

### Accessories upon reques


Silencer art. SSX 1/4"



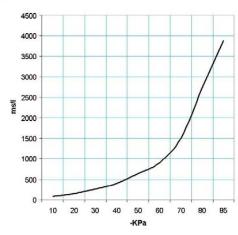








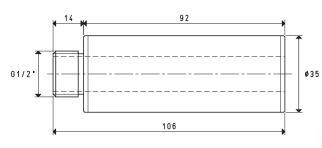




| P=COMPRESSED AIR CONNECTION R=EXHAUST | U=VACUUM CONNECTION |     |          | U         |
|---------------------------------------|---------------------|-----|----------|-----------|
| Art.                                  |                     |     | 15 03 10 |           |
| Quantity of sucked air                | cum/h               | 4.8 | 5        | 6         |
| Max. vacuum level                     | -KPa                | 62  | 78       | 85        |
| Final pressure                        | mbar abs.           | 380 | 220      | 150       |
| Supply pressure                       | bar (g)             | 4   | 5        | 6         |
| Air consumption                       | NI/s                | 1.3 | 1.6      | 1.8       |
| Working temperature                   | °C                  |     |          | -20 / +80 |
| Noise level                           | dB(A)               |     |          | 79        |
| Weight                                | g                   |     |          | 179       |

### Air capacity (NI/s) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption | Air capacity (NI/s) at different vacuum levels (-KPa) Max. vacuum lev |      |      |      |      |      |      |      |      | Max. vacuum level |
|-----------|---------------|-----------------|-----------------------------------------------------------------------|------|------|------|------|------|------|------|------|-------------------|
| art.      | bar (g)       | NI/s            | 0                                                                     | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | -KPa              |
| 15 03 10  | 6.0           | 1.8             | 1.39                                                                  | 1.30 | 1.15 | 1.00 | 0.89 | 0.77 | 0.69 | 0.44 | 0.04 | 85                |

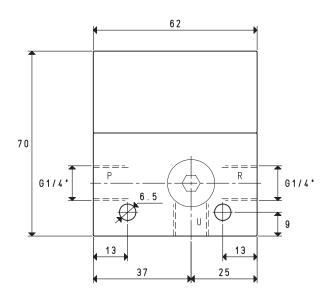

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)

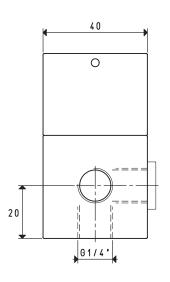


| Generator | Supply press. | Air consumption | 1  | Evacu | ation time | (ms/l = s/l) | m³) at diff | erent vacu | ium levels | (-KPa) | ı    | Max. vacuum level |
|-----------|---------------|-----------------|----|-------|------------|--------------|-------------|------------|------------|--------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10 | 20    | 30         | 40           | 50          | 60         | 70         | 80     | 85   | -KPa              |
| 15 03 10  | 6.0           | 1.8             | 77 | 154   | 261        | 403          | 649         | 902        | 1506       | 2730   | 3876 | 85                |

### Accessories upon req

Silencer art. SSX 1/2"



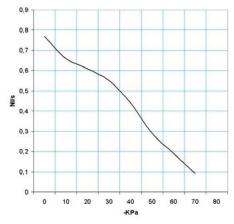

If, for example, a vacuum cup is connected to the service U, thanks to this system it will disconnect much rapidly than with the vacuum generators described previously.

They are fully made with anodised aluminium.



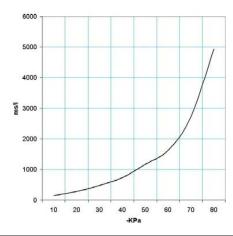







| P=COMPRESSED AIR CONNECTION R=EXI | HAUST U=VACUUM CONNECTI | ON  |          | V         |
|-----------------------------------|-------------------------|-----|----------|-----------|
| Art.                              |                         |     | 15 02 10 |           |
| Quantity of sucked air            | cum/h                   | 2.7 | 2.8      | 2.8       |
| Max. vacuum level                 | -KPa                    | 55  | 70       | 83        |
| Final pressure                    | mbar abs.               | 450 | 300      | 170       |
| Supply pressure                   | bar (g)                 | 4   | 5        | 6         |
| Air consumption                   | NI/s                    | 0.7 | 0.8      | 0.9       |
| Working temperature               | °C                      |     |          | -20 / +80 |
| Noise level                       | dB(A)                   |     |          | 63        |
| Weight                            | g                       |     |          | 319       |
| Spare parts                       |                         |     |          |           |
| Sealing kit                       | art.                    |     |          | 00 15 500 |

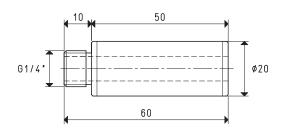
Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.


8.08

### Air capacity (NI/s) at different vacuum levels (-Kpa)

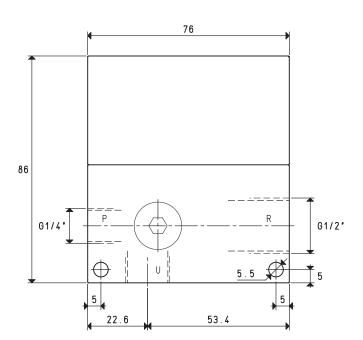


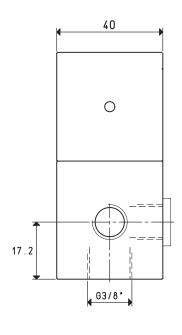
| Generator | Supply press. | Air consumption |      |      | Air capaci | ty (NI/s) at | different | vacuum le | vels (-KPa) |      |    | Max. vacuum level |
|-----------|---------------|-----------------|------|------|------------|--------------|-----------|-----------|-------------|------|----|-------------------|
| art.      | bar (g)       | NI/s            | 0    | 10   | 20         | 30           | 40        | 50        | 60          | 70   | 80 | -KPa              |
| 15 02 10  | 6.0           | 0.9             | 0.77 | 0.66 | 0.61       | 0.55         | 0.44      | 0.29      | 0.19        | 0.09 |    | 83                |


### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption |     | Evacuation | time (ms/l | $I = s/m^3$ ) a | at different | vacuum le | evels (-KPa | a)   | Max. vacuum level |
|-----------|---------------|-----------------|-----|------------|------------|-----------------|--------------|-----------|-------------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10  | 20         | 30         | 40              | 50           | 60        | 70          | 80   | -KPa              |
| 15 02 10  | 6.0           | 0.9             | 139 | 278        | 472        | 727             | 1171         | 1628      | 2720        | 4928 | 83                |

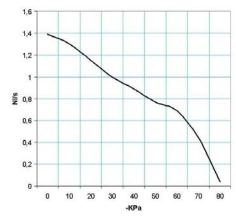

### Accessories upon req


Silencer art. SSX 1/4"



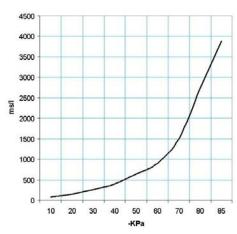








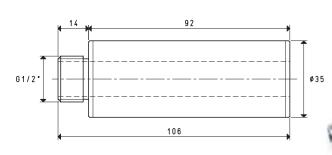




| P=COMPRESSED AIR CONNECTION | R=EXHAUST | U=VACUUM CONNECTION |     |          |           |
|-----------------------------|-----------|---------------------|-----|----------|-----------|
| Art.                        |           |                     |     | 15 04 10 |           |
| Quantity of sucked air      |           | cum/h               | 4.8 | 5        | 5         |
| Max. vacuum level           |           | -KPa                | 62  | 78       | 85        |
| Final pressure              |           | mbar abs.           | 380 | 220      | 150       |
| Supply pressure             |           | bar (g)             | 4   | 5        | 6         |
| Air consumption             |           | NI/s                | 1.3 | 1.6      | 1.8       |
| Working temperature         |           | °C                  |     |          | -20 / +80 |
| Noise level                 |           | dB(A)               |     |          | 79        |
| Weight                      |           | g                   |     |          | 501       |
| Spare parts                 |           |                     |     |          |           |
| Sealing kit                 |           | art.                |     |          | 00 15 501 |

### Air capacity (NI/s) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption |      |      | Air capacit | y (NI/s) at | different | vacuum le | vels (-KPa) |      |      | Max. vacuum level |
|-----------|---------------|-----------------|------|------|-------------|-------------|-----------|-----------|-------------|------|------|-------------------|
| art.      | bar (g)       | NI/s            | 0    | 10   | 20          | 30          | 40        | 50        | 60          | 70   | 80   | -KPa              |
| 15 04 10  | 6.0           | 1.8             | 1.39 | 1.30 | 1.15        | 1.00        | 0.89      | 0.77      | 0.69        | 0.44 | 0.04 | 85                |


### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption |    | Evacu | ation time | (ms/l = s/l) | m³) at diff | erent vacu | um levels | (-KPa) |      | Max. vacuum level |
|-----------|---------------|-----------------|----|-------|------------|--------------|-------------|------------|-----------|--------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10 | 20    | 30         | 40           | 50          | 60         | 70        | 80     | 85   | -KPa              |
| 15 04 10  | 6.0           | 1.8             | 77 | 154   | 261        | 403          | 649         | 902        | 1506      | 2730   | 3876 | 85                |

## Accessories upon request

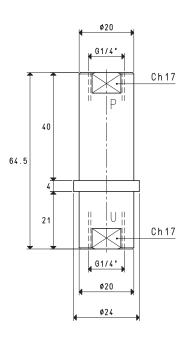
Silencer art. SSX 1/2"





This new range of vacuum generators also exploits the Venturi principle. Their distinctive feature compared with traditional vacuum generators are the two air and vacuum supply connections located in-line, while the exhaust connection of the sucked and exhaust air is orthogonal to them and it is located on the on the generator circumference.

These vacuum generators are easy to disassemble, thus allowing visibility and access to all the components. The advantages of these generators include reduced overall dimensions, easy maintenance and easy assembly to the vacuum cup supports or to the vacuum cup holders.


As a standard, they are equipped with pressed stainless steel suction filtre and a special microfibre silencer, which

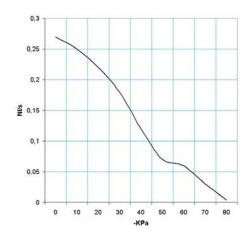
They are fully made with anodised aluminium.

particularly silent.

is wrapped around the exhaust connection, making them

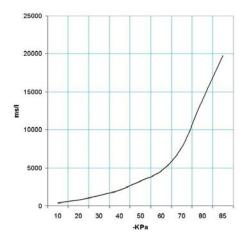







| P=COMPRESSED AIR CONNECTION R=EXHAU | IST U=VACUUM CONNECTION |     |       | U         |
|-------------------------------------|-------------------------|-----|-------|-----------|
| Art.                                |                         |     | PVP 1 |           |
| Quantity of sucked air              | cum/h                   | 0.9 | 1.0   | 1.0       |
| Max. vacuum level                   | -KPa                    | 60  | 80    | 85        |
| Final pressure                      | mbar abs.               | 400 | 200   | 150       |
| Supply pressure                     | bar (g)                 | 3   | 4     | 5         |
| Air consumption                     | NI/s                    | 0.5 | 0.6   | 0.8       |
| Working temperature                 | °C                      |     |       | -20 / +80 |
| Noise level                         | dB(A)                   |     |       | 62        |
| Weight                              | g                       |     |       | 44        |
| Spare parts                         |                         |     |       |           |
| Silencer                            | art.                    |     |       | 00 15 114 |
| Suction filtre                      | art.                    |     |       | SP 1/4 I  |

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.


8.12

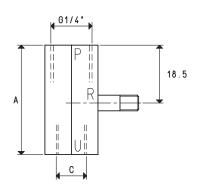
## Air capacity (NI/s) at different vacuum levels (-Kpa)

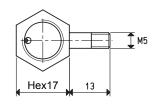


| Generator | Supply press. | Air consumption |      |      | Air capacit | ty (NI/s) at | different | vacuum le | vels (-KPa) |      |       | Max. vacuum level |
|-----------|---------------|-----------------|------|------|-------------|--------------|-----------|-----------|-------------|------|-------|-------------------|
| art.      | bar (g)       | NI/s            | 0    | 10   | 20          | 30           | 40        | 50        | 60          | 70   | 80    | -KPa              |
| PVP 1     | 5.0           | 0.8             | 0.27 | 0.25 | 0.22        | 0.18         | 0.12      | 0.07      | 0.06        | 0.03 | 0.004 | 85                |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)




| Generator | Supply press. | Air consumption | 1 |     | Evacua | ation time | (ms/l = s/ | /m³) at diff | erent vacu | um levels | (-KPa) | Ma    | x. vacuui | m level |
|-----------|---------------|-----------------|---|-----|--------|------------|------------|--------------|------------|-----------|--------|-------|-----------|---------|
| art.      | bar (g)       | NI/s            |   | 10  | 20     | 30         | 40         | 50           | 60         | 70        | 80     | 85    | -KPa      |         |
| PVP 1     | 5.0           | 0.8             |   | 393 | 786    | 1336       | 2057       | 3312         | 4605       | 7690      | 13935  | 19787 | 85        |         |


The operation of these vacuum generators is also based on the Venturi principle.

Their distinctive feature compared with traditional vacuum generators are the two air and vacuum supply connections located in-line, while the exhaust connection of the sucked and exhaust air is orthogonal to them.

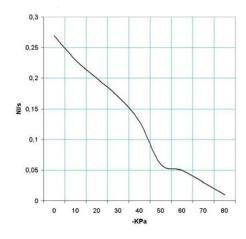
The advantages of these generators include reduced overall dimensions, easy maintenance and easy assembly. These vacuum generators can be assembled directly onto the vacuum cup supports or vacuum cup holders. They are fully made with anodised aluminium, except for the exhaust nozzle which is made with brass.





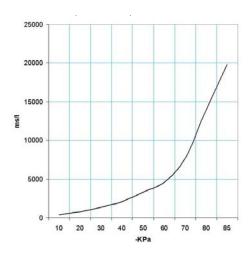





| P=COMPRESSED A         | IR CONNECTION | R=EXH | AUST | U=VACUUM C | CONNECTION |     |           |     |     |           |
|------------------------|---------------|-------|------|------------|------------|-----|-----------|-----|-----|-----------|
| Art.                   |               |       |      | GV1        |            |     | GV2       |     |     | GV3       |
| Quantity of sucked air | cum/h         | 1.0   | 1.0  | 1.0        | 1.0        | 1.0 | 1.0       | 1.0 | 1.0 | 1.0       |
| Max. vacuum level      | -KPa          | 60    | 75   | 85         | 60         | 75  | 85        | 60  | 75  | 85        |
| Final pressure         | mbar abs.     | 400   | 250  | 150        | 400        | 250 | 150       | 400 | 250 | 150       |
| Supply pressure        | bar (g)       | 3     | 4    | 5          | 3          | 4   | 5         | 3   | 4   | 5         |
| Air consumption        | NI/s          | 0.5   | 0.6  | 0.7        | 0.5        | 0.6 | 0.7       | 0.5 | 0.6 | 0.7       |
| Working temperature    | •C            |       |      | -20 / +80  |            |     | -20 / +80 |     |     | -20 / +80 |
| Noise level            | dB(A)         |       |      | 70         |            |     | 70        |     |     | 70        |
| Weight                 | g             |       |      | 19         |            |     | 20        |     |     | 21        |
| A                      |               |       |      | 30         |            |     | 35        |     |     | 38        |
| C                      | Ø             |       |      | M5         |            |     | G1/8"     |     |     | G1/4"     |

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

8.14


# 3D drawings available at www.vuototecnica.net

### Air capacity (NI/s) at different vacuum levels (-Kpa)

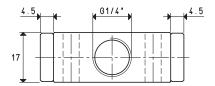


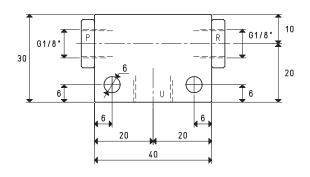
| Generator       | Supply press. | Air consumption |      |      | Air capacit | y (NI/s) at | different v | vacuum le | rels (-KPa) |      |       | Max. vacuum level |
|-----------------|---------------|-----------------|------|------|-------------|-------------|-------------|-----------|-------------|------|-------|-------------------|
| art.            | bar (g)       | NI/s            | 0    | 10   | 20          | 30          | 40          | 50        | 60          | 70   | 80    | -KPa              |
| GV1 - GV2 - GV3 | 5.0           | 0.7             | 0.27 | 0.23 | 0.20        | 0.17        | 0.13        | 0.06      | 0.05        | 0.03 | 0.004 | 85                |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



| Generator       | Supply press. | Air consumption |     | Evacu | ation time | (ms/l = s/l) | m³) at diff | erent vacu | um levels | (-KPa) | N     | <mark>a</mark> x. vacuu | m level |
|-----------------|---------------|-----------------|-----|-------|------------|--------------|-------------|------------|-----------|--------|-------|-------------------------|---------|
| art.            | bar (g)       | NI/s            | 10  | 20    | 30         | 40           | 50          | 60         | 70        | 80     | 85    | -KPa                    |         |
| GV1 - GV2 - GV3 | 5.0           | 0.7             | 394 | 788   | 1339       | 2063         | 3322        | 4617       | 7711      | 13973  | 19841 | 85                      |         |

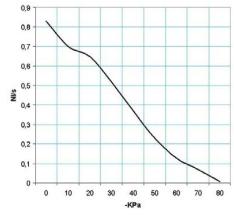

With their extremely reduced size and high performance, these single-stage vacuum generators operate exploiting the Venturi principle.


Supplying the generator with compressed air in P, vacuum will be generated at connection U, while both the supply and the sucked air will be released through R. By interrupting the air supply in P, the vacuum effect in U will also stop.

The vacuum generators described in this page are generally used for interconnecting vacuum cups, for gripping and handling non-porous objects and equipment with low capacity requirements.

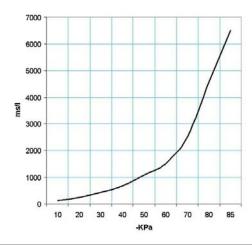
They are made with anodised aluminium with brass ejectors.







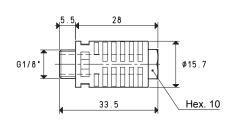




| P=COMPRESSED AIR CONNECTION R=EXHA | AUST U=VACUUM CONNECTI | ON  |       |           |
|------------------------------------|------------------------|-----|-------|-----------|
| Art.                               |                        |     | PVP 2 |           |
| Quantity of sucked air             | cum/h                  | 2.8 | 2.9   | 3.0       |
| Max. vacuum level                  | -KPa                   | 60  | 70    | 85        |
| Final pressure                     | mbar abs.              | 400 | 300   | 150       |
| Supply pressure                    | bar (g)                | 4   | 5     | 6         |
| Air consumption                    | NI/s                   | 0.7 | 0.9   | 1.0       |
| Working temperature                | °C                     |     |       | -20 / +80 |
| Noise level                        | dB(A)                  |     |       | 78        |
| Weight                             | g                      |     |       | 70        |

### Air capacity (NI/s) at different vacuum levels (-Kpa)

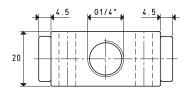


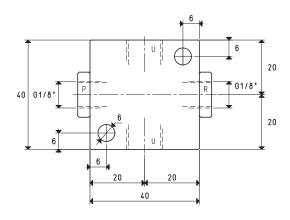
| Generator | Supply press. | Air consumption |      |      | Air capaci | ty (NI/s) at | different | vacuum le | vels (-KPa | )    | N     | Max. vacuum level |
|-----------|---------------|-----------------|------|------|------------|--------------|-----------|-----------|------------|------|-------|-------------------|
| art.      | bar (g)       | NI/s            | 0    | 10   | 20         | 30           | 40        | 50        | 60         | 70   | 80    | -KPa              |
| PVP 2     | 6.0           | 1.0             | 0.83 | 0.70 | 0.65       | 0.52         | 0.37      | 0.23      | 0.13       | 0.07 | 0.007 | 85                |


### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption |     | Evacu | ation time | (ms/l = s/l) | /m³) at diff | erent vacu | ıum levels | (-KPa) |      | Max. vacuum level |
|-----------|---------------|-----------------|-----|-------|------------|--------------|--------------|------------|------------|--------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10  | 20    | 30         | 40           | 50           | 60         | 70         | 80     | 85   | -KPa              |
| PVP 2     | 6.0           | 1.0             | 128 | 257   | 438        | 675          | 1087         | 1511       | 2523       | 4572   | 6492 | 85                |


### Accessories upon request

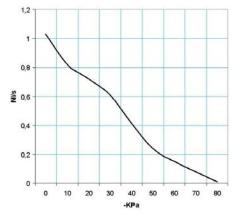

Silencer art. 00 15 74





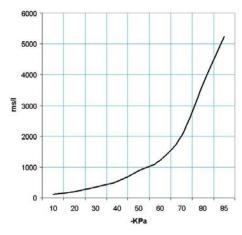








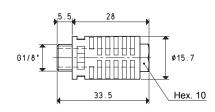

| 3.4 | PVP 3    |                |
|-----|----------|----------------|
| 3.4 | ٥٢       |                |
|     | 3.5      | 3.7            |
| 60  | 70       | 85             |
| 400 | 300      | 150            |
| 4   | 5        | 6              |
| 1.1 | 1.3      | 1.5            |
|     |          | -20 / +80      |
|     |          | 80             |
|     |          | 100            |
|     | 400<br>4 | 400 300<br>4 5 |


### O

### Air capacity (NI/s) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption |      | Air capacity (NI/s) at different vacuum levels (-KPa) |      |      |      |      |      |      |       | lax. vacuum level |
|-----------|---------------|-----------------|------|-------------------------------------------------------|------|------|------|------|------|------|-------|-------------------|
| art.      | bar (g)       | NI/s            | 0    | 10                                                    | 20   | 30   | 40   | 50   | 60   | 70   | 80    | -KPa              |
| PVP 3     | 6.0           | 1.5             | 1.03 | 0.82                                                  | 0.72 | 0.61 | 0.41 | 0.24 | 0.15 | 0.08 | 0.008 | 85                |


### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption |     | Evacu | ation time | (ms/l = s/l) | /m³) at diff | ferent vacu | um levels | (-KPa) |      | Max. vacuum level |
|-----------|---------------|-----------------|-----|-------|------------|--------------|--------------|-------------|-----------|--------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10  | 20    | 30         | 40           | 50           | 60          | 70        | 80     | 85   | -KPa              |
| PVP 3     | 6.0           | 1.5             | 104 | 207   | 353        | 544          | 857          | 1217        | 2033      | 3684   | 5232 | 85                |

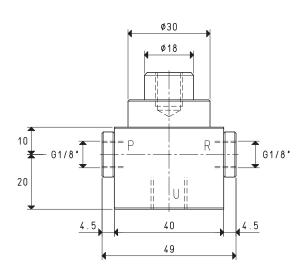
### Accessories upon request

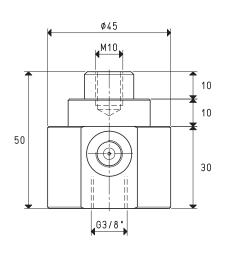
Silencer art. 00 15 74





3D drawings available at www.vuototecnica.net


The vacuum generators described in this page are also based on the Venturi principle and share the same technical features as the previous ones. Their distinctive feature is their shape.


The vacuum connection U, in fact, is threaded to allow the assembly of a vacuum cup with a male 3/8" threaded gas support, while in-line, but on the opposite side an M 10 threaded hole allows installing the generator directly onto the machine or on the cup holders with springing device. They are fully made with anodised aluminium, with brass ejectors.

Equipped with a vacuum cup, they are true independent gripping units.

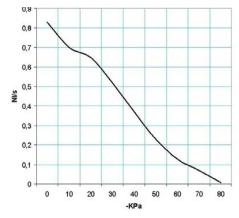
These vacuum generators are suited for vacuum cup operated loaders or handlers, for gripping sheet steel, glass slabs, plastic panels and other similar products.





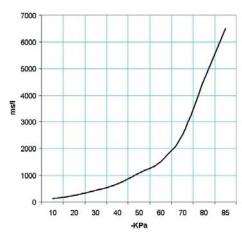





| P=COMPRESSED AIR CONNECTION R=EXHA | UST U=VACUUM CONNECT | ON  |         |           |
|------------------------------------|----------------------|-----|---------|-----------|
| Art.                               |                      |     | PVP 2 M |           |
| Quantity of sucked air             | cum/h                | 2.8 | 2.9     | 3.0       |
| Max. vacuum level                  | -KPa                 | 60  | 70      | 85        |
| Final pressure                     | mbar abs.            | 400 | 300     | 150       |
| Supply pressure                    | bar (g)              | 4   | 5       | 6         |
| Air consumption                    | NI/s                 | 0.7 | 0.9     | 1.0       |
| Working temperature                | °C                   |     |         | -20 / +80 |
| Noise level                        | dB(A)                |     |         | 78        |
| Weight                             | g                    |     |         | 162       |

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

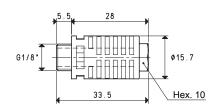
8.20


### O

### Air capacity (NI/s) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption |      |      | Air capacit | y (NI/s) at | different v | vacuum le | vels (-KPa) |      | N     | lax. vacuum level |
|-----------|---------------|-----------------|------|------|-------------|-------------|-------------|-----------|-------------|------|-------|-------------------|
| art.      | bar (g)       | NI/s            | 0    | 10   | 20          | 30          | 40          | 50        | 60          | 70   | 80    | -KPa              |
| PVP 2 M   | 6.0           | 1.0             | 0.83 | 1.70 | 0.65        | 0.52        | 0.37        | 0.23      | 0.13        | 0.07 | 0.007 | 85                |


### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption |     | Evacu | ation time | (ms/l = s) | /m³) at diff | erent vacu | ıum levels | (-KPa) |      | Max. vacuum level |
|-----------|---------------|-----------------|-----|-------|------------|------------|--------------|------------|------------|--------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10  | 20    | 30         | 40         | 50           | 60         | 70         | 80     | 85   | -KPa              |
| PVP 2 M   | 6.0           | 1.0             | 128 | 257   | 438        | 675        | 1087         | 1511       | 2523       | 4572   | 6492 | 85                |

### Accessories upon request

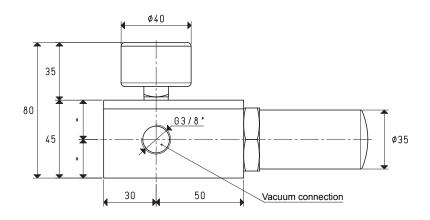
Silencer art. 00 15 74

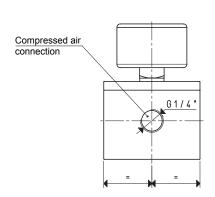


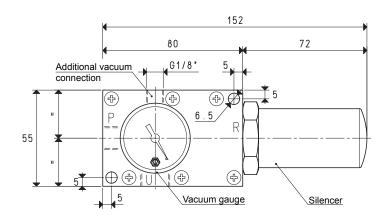


Vacuum generators PVP 7 X also exploit the Venturi principle. Their distinctive feature compared to PVP 2 and PVP 3 is their greater suction capacity, thanks to the association of two ejectors in parallel.

A special silencer made with sintered ceramic is installed on their exhaust, making them particularly silent.


As a standard, they are equipped with a vacuum gauge for a direct reading of the vacuum level.


An additional connection on the body of the generator allows the installation of a mini vacuum switch for signalling the vacuum level, or of a pneumatic solenoid valve for a quick restoration of the atmospheric pressure at the service.

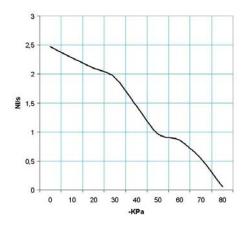

They are fully made with anodised aluminium, with stainless steel ejectors.

These vacuum generators can be used for connecting one or more vacuum cups or equipment with capacity requirements within the shown values.



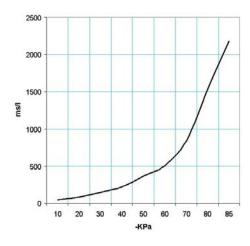









| P=COMPRESSED AIR CONNECTION | R=EXHAUST | U=VACUUM CONNECTION                   |     |         |           |
|-----------------------------|-----------|---------------------------------------|-----|---------|-----------|
| Art.                        |           |                                       |     | PVP 7 X |           |
| Quantity of sucked air      |           | cum/h                                 | 8.5 | 8.8     | 8.9       |
| Max. vacuum level           |           | -KPa                                  | 60  | 73      | 85        |
| Final pressure              |           | mbar abs.                             | 400 | 270     | 150       |
| Supply pressure             |           | bar (g)                               | 4   | 5       | 6         |
| Air consumption             |           | NI/s                                  | 2.3 | 2.8     | 3.2       |
| Working temperature         |           | °C                                    |     |         | -20 / +80 |
| Noise level                 |           | dB(A)                                 |     |         | 63        |
| Weight                      |           | g                                     |     |         | 470       |
| Spare parts                 |           |                                       |     |         |           |
| Sealing kit                 |           | art.                                  |     |         | 00 15 276 |
| Vacuum <mark>gauge</mark>   |           | art.                                  |     |         | 09 03 15  |
| Silencer                    |           | art.                                  |     |         | 00 15 55  |
|                             |           | · · · · · · · · · · · · · · · · · · · |     |         |           |


# 3D drawings available at www.vuototecnica.net

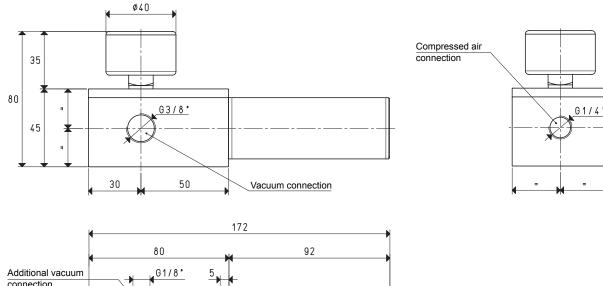
### Air capacity (NI/s) at different vacuum levels (-Kpa)

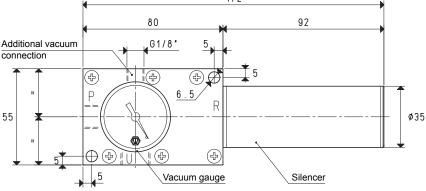


| Generator | Supply press. | Air consumption |      |      | Air capacit | y (NI/s) at | different v | <i>r</i> acuum le | vels (-KPa) |      |      | Max. vacuum level |  |  |
|-----------|---------------|-----------------|------|------|-------------|-------------|-------------|-------------------|-------------|------|------|-------------------|--|--|
| art.      | bar (g)       | NI/s            | 0    | 10   | 20          | 30          | 40          | 50                | 60          | 70   | 80   | -KPa              |  |  |
| PVP 7 X   | 6.0           | 3.2             | 2.47 | 2.28 | 2.10        | 1.94        | 1.44        | 0.97              | 0.86        | 0.54 | 0.05 | 85                |  |  |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)




| Generator | Supply press. | Air consumption |    | Evacuation time (ms/l = s/m³) at different vacuum levels (-KPa) |     |     |     |     |     |      |      | Max. vacuum level |  |  |  |
|-----------|---------------|-----------------|----|-----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|-------------------|--|--|--|
| art.      | bar (g)       | NI/s            | 10 | 20                                                              | 30  | 40  | 50  | 60  | 70  | 80   | 85   | -KPa              |  |  |  |
| PVP 7 X   | 6.0           | 3.2             | 43 | 86                                                              | 147 | 226 | 365 | 507 | 847 | 1536 | 2181 | 85                |  |  |  |


Vacuum generators PVP 7X share the same mechanical and technical features as the previously described ones. Their distinctive feature is a state of the are silencer installed on them and made with natural fibre sound absorbing material contained in a special cylindrical anodised aluminium enclosure open on the exhaust.

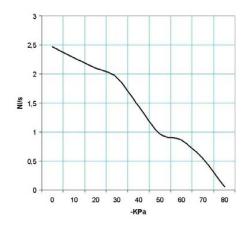
This prevents the silencer from being clogged and allows the vacuum generator to suck oil or water condensation saturated fluids mixed with fine and impalpable dust.

They can be used as PVP 7X and, in addition, they can also operate in humid or dusty environments.



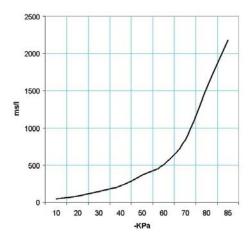







| EXHAUST U=VACUUM CONNECTION |                                                      |                                                                         | -                                                                                                  |
|-----------------------------|------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                             |                                                      | PVP 7 SX                                                                |                                                                                                    |
| cum/h                       | 8.5                                                  | 8.8                                                                     | 8.9                                                                                                |
| -KPa                        | 60                                                   | 73                                                                      | 85                                                                                                 |
| mbar abs.                   | 400                                                  | 270                                                                     | 150                                                                                                |
| bar (g)                     | 4                                                    | 5                                                                       | 6                                                                                                  |
| NI/s                        | 2.3                                                  | 2.8                                                                     | 3.2                                                                                                |
| °C                          |                                                      |                                                                         | -20 / +80                                                                                          |
| dB(A)                       |                                                      |                                                                         | 63                                                                                                 |
| g                           |                                                      |                                                                         | 470                                                                                                |
|                             |                                                      |                                                                         |                                                                                                    |
| art.                        |                                                      |                                                                         | 00 15 276                                                                                          |
| art.                        |                                                      |                                                                         | 09 03 15                                                                                           |
| art.                        |                                                      |                                                                         | SSX 3/4 R                                                                                          |
|                             | cum/hKPa mbar abs. bar (g) NI/s °C dB(A) g art. art. | cum/h 8.5 -KPa 60 mbar abs. 400 bar (g) 4 NI/s 2.3 °C dB(A) g art. art. | PVP 7 SX  cum/h 8.5 8.8 -KPa 60 73 mbar abs. 400 270 bar (g) 4 5 NI/s 2.3 2.8 °C dB(A) g art. art. |

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.


8.24

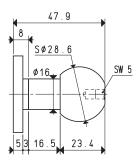
## Air capacity (NI/s) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption |      |      | Air capacit | y (NI/s) at | different | vacuum le | vels (-KPa) |      |      | Max. vacuum level |
|-----------|---------------|-----------------|------|------|-------------|-------------|-----------|-----------|-------------|------|------|-------------------|
| art.      | bar (g)       | NI/s            | 0    | 10   | 20          | 30          | 40        | 50        | 60          | 70   | 80   | -KPa              |
| PVP 7 SX  | 6.0           | 3.2             | 2.47 | 2.28 | 2.10        | 1.94        | 1.44      | 0.97      | 0.86        | 0.54 | 0.05 | 85                |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)

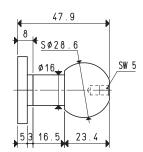


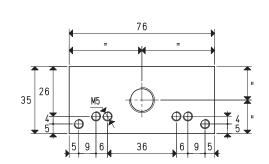

| Generator | Supply press. | Air consumption |    | Evac | uation time | ms/l = s | /m³) at diff | fere <mark>nt v</mark> acu | um levels | (-KPa) | Ma   | x. vacuu <mark>m</mark> | level |
|-----------|---------------|-----------------|----|------|-------------|----------|--------------|----------------------------|-----------|--------|------|-------------------------|-------|
| art.      | bar (g)       | NI/s            | 10 | 20   | 30          | 40       | 50           | 60                         | 70        | 80     | 85   | -KPa                    |       |
| PVP 7 SX  | 6.0           | 3.2             | 43 | 86   | 147         | 226      | 365          | 507                        | 847       | 1536   | 2181 | 85                      |       |

### FIXING SUPPORTS FOR SINGLE-STAGE VACUUM GENERATORS

The supports described in this page are made with anodised aluminium as a standard, but, upon request, they can be supplied in the stainless steel version.

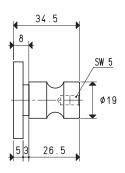
These supports are for fixing the single-stage vacuum generators to the machine via a cylindrical slotted pin or a ball pin housed in the machine itself.

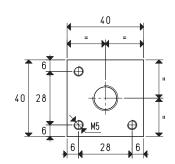

They are suited for robotic gripping systems and they allow for an easy installation of the vacuum generators on the profiles used in the automotive sector.







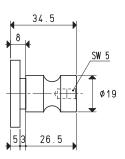


| Art.        | For        | Material        | Weight |
|-------------|------------|-----------------|--------|
| 71111       | generators |                 | g      |
| FCH 01      | PVP 2      | aluminium       | 60     |
|             | PVP 3      |                 |        |
| FCH 01 INOX | PVP 2      | stainless steel | 180    |
|             | PVP 3      |                 |        |

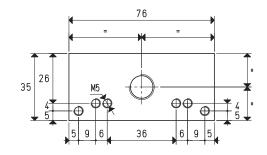







| Art.        | For        | Material        | Weight |
|-------------|------------|-----------------|--------|
| Alti        | generators |                 | g      |
| FCH 02      | 15 01 10   | aluminium       | 72     |
|             | 15 02 10   |                 |        |
|             | 15 03 10   |                 |        |
|             | 15 04 10   |                 |        |
| FCH 02 INOX | 15 01 10   | stainless steel | 220    |
|             | 15 02 10   |                 |        |
|             | 15 03 10   |                 |        |
|             | 15 04 10   |                 |        |








| Art.        | For        | Material        | Weight |
|-------------|------------|-----------------|--------|
| Al u        | generators |                 | g      |
| FCH 03      | PVP 2      | aluminium       | 39     |
|             | PVP 3      |                 |        |
| FCH 03 INOX | PVP 2      | stainless steel | 117    |
|             | PVP 3      |                 |        |









| Art.        | For        | Material        | Weight |
|-------------|------------|-----------------|--------|
| Al u        | generators |                 | g      |
| FCH 04      | 15 01 10   | aluminium       | 52     |
|             | 15 02 10   |                 |        |
|             | 15 03 10   |                 |        |
|             | 15 04 10   |                 |        |
| FCH 04 INOX | 15 01 10   | stainless steel | 156    |
|             | 15 02 10   |                 |        |
|             | 15 03 10   |                 |        |
|             | 15 04 10   |                 |        |

Our multi-stage vacuum generators produce a maximum vacuum of 90%, equal to a final vacuum level of 100 mbar abs., with different suction capacities. They operate by use of compressed air from 1 to 6 bar (g).

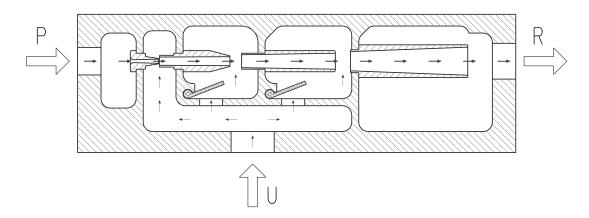
### Working principle

Each ejector is based on the Venturi principle: the supply fluid (compressed air) is led high speed by a convergent pipe into the fluid to be extracted (volume of the air to be sucked). This mixture is then led into two or three divergent pipes, where its kinetic energy is transformed into pressure energy for it to enter in the environment at a higher pressure (atmospheric pressure at the exhaust).

### Technical features

The main asset of multi-stage vacuum generators is its ability to exploit the kinetic energy of the supply compressed air via several specially dimensioned in-line ejectors, before releasing it in the atmosphere. This system allows, given the same capacity, a reduced compressed air consumption compared to the single-stage vacuum generators.

The suction capacity is indirectly proportional to the differential between the pressure of the fluid to be sucked and the external (atmospheric) pressure.


The reduced size and weight make multi-stage vacuum generators compact in relation to their great suction capacity.

The absence of moving parts make them particularly silent and allow them to be used continuously, without developing heat.

Being supplied exclusively by compressed air, these vacuum generators are explosion-proof and can be used in work environments with temperatures ranging from -20 to  $+80~^{\circ}C$ .

They are fully made with stainless materials.

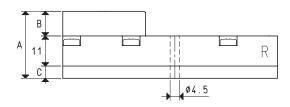
Thanks to all these features, a good filtration of the supply and sucked compressed air is sufficient to make these generators are fully maintenance-free.

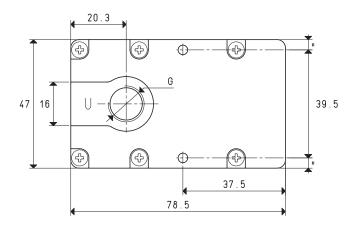


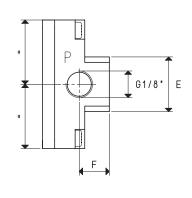
P = Compressed air connection

R = Exhaust

U = Vacuum connection


### **MULTI-STAGE VACUUM GENERATORS SERIES M**

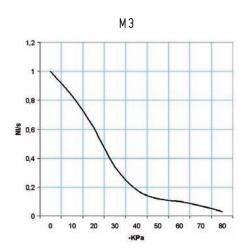

These vacuum generators feature multiple state of the art ejectors assembled onto small modules. One of their distinctive features is their great suction capacity compared to their reduced size.

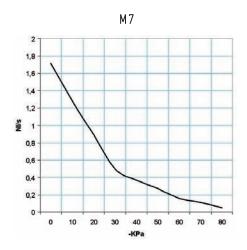

With a compressed air supply of  $4 \div 5$  bar (g), they can produce a maximum vacuum equal to 85% and a suction capacity of  $3.6 \div 18$  cum/h, according to the number of modules.

The silencer is built-in.

They are fully made with slightly anodised alloys and can be installed in any position. The multi-stage vacuum generators in this range are suited for interconnecting vacuum cup gripping systems and, in particular, in the industrial robotics sector, which requires equipment with excellent working performance, but with weight and size reduced to the minimum.

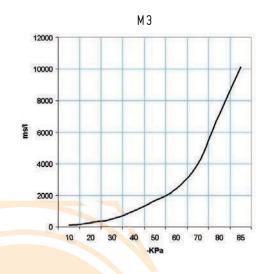


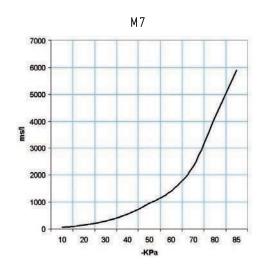




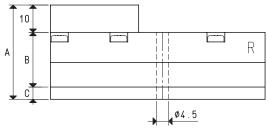

| P=COMPRESSED AIR CON       | NECTION R=EXHAUST | U=VACI | JUM CONNECTION |            |     |     |            |
|----------------------------|-------------------|--------|----------------|------------|-----|-----|------------|
| Art.                       |                   |        |                | М 3        |     |     | M 7        |
| Quantity of sucked air     | cum/h             | 3      | 3.4            | 3.6        | 5.4 | 5.8 | 6.2        |
| Max. vacuum level          | -KPa              | 62     | 82             | 85         | 62  | 82  | 85         |
| Final pressure             | mbar abs.         | 380    | 180            | 150        | 380 | 180 | 150        |
| Supply pressure            | bar (g)           | 3      | 4              | 5          | 3   | 4   | 5          |
| Air consumption            | NI/s              | 0.5    | 0.7            | 0.8        | 0.8 | 1.2 | 1.4        |
| Working temperature        | °C                |        |                | -10 / +80  |     |     | -10 / +80  |
| Noise level                | dB(A)             |        |                | 64         |     |     | 70         |
| Weight                     | g                 |        |                | 109        |     |     | 111        |
| A                          |                   |        |                | 24.5       |     |     | 25.5       |
| В                          |                   |        |                | 9          |     |     | 10         |
| C                          |                   |        |                | 4.5        |     |     | 4.5        |
| E                          | Ø                 |        |                | 20         |     |     | 24         |
| F                          |                   |        |                | 11         |     |     | 12         |
| G                          | Ø                 |        |                | G1/4"      |     |     | G3/8"      |
| Spare parts                |                   |        |                |            |     |     |            |
| Sealing kit and reed valve | art.              |        |                | 00 KIT M 3 |     |     | 00 KIT M 7 |

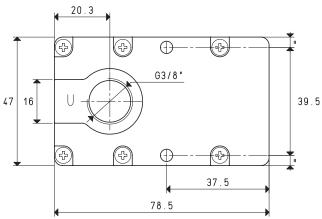

### Air capacity (NI/s) at different vacuum levels (-Kpa)

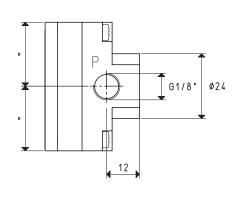





| Generator | Supply press. | Air consumption |      | Air capacity (NI/s) at different vacuum levels (-KPa) |      |      |      |      |      |      |      |      |  |
|-----------|---------------|-----------------|------|-------------------------------------------------------|------|------|------|------|------|------|------|------|--|
| art.      | bar (g)       | NI/s            | 0    | 10                                                    | 20   | 30   | 40   | 50   | 60   | 70   | 80   | -KPa |  |
| M 3       | 5.0           | 0.8             | 1.00 | 0.83                                                  | 0.61 | 0.34 | 0.18 | 0.12 | 0.10 | 0.07 | 0.03 | 85   |  |
| M 7       | 5.0           | 1.4             | 1.72 | 1.28                                                  | 0.89 | 0.50 | 0.37 | 0.27 | 0.16 | 0.11 | 0.05 | 85   |  |


### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



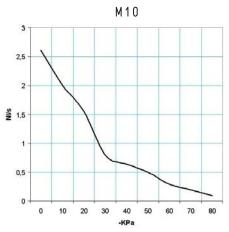



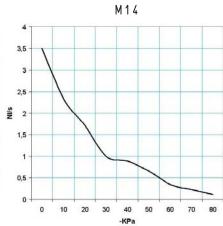

| Generator | Supply press. | Air consumption |     | Evacuation time (ms/I = $s/m^3$ ) at different vacuum levels (-KPa) |     |     |      |      |      |      |       | Max. vacuum level |
|-----------|---------------|-----------------|-----|---------------------------------------------------------------------|-----|-----|------|------|------|------|-------|-------------------|
| art.      | bar (g)       | NI/s            | 10  | 20                                                                  | 30  | 40  | 50   | 60   | 70   | 80   | 85    | -KPa              |
| M 3       | 5.0           | 0.8             | 106 | 244                                                                 | 491 | 969 | 1642 | 2398 | 4004 | 7128 | 10122 | 85                |
| M 7       | 5.0           | 1.4             | 61  | 142                                                                 | 285 | 563 | 954  | 1394 | 2328 | 4144 | 5885  | 85                |

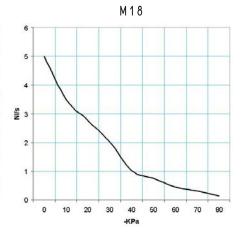






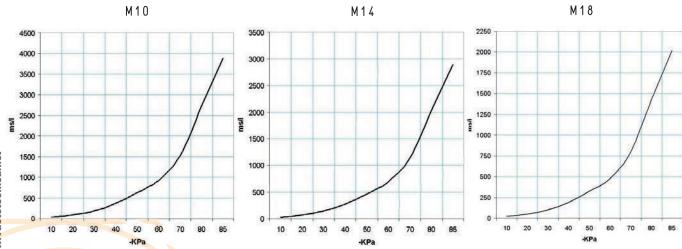




| P=COMPRESSED AIR CO        | NNECTION  | R=EXHA | AUST | U=VACUUM CO | ONNECTION |      |             |      |      | U                        |
|----------------------------|-----------|--------|------|-------------|-----------|------|-------------|------|------|--------------------------|
| Art.                       |           |        |      | M 10        |           |      | M 14        |      |      | M 18                     |
| Quantity of sucked air     | cum/h     | 7.7    | 8.5  | 9.4         | 10.2      | 11.6 | 12.6        | 14.8 | 16.5 | 18.0                     |
| Max. vacuum level          | -KPa      | 62     | 82   | 85          | 62        | 82   | 85          | 62   | 82   | 85                       |
| Final pressure             | mbar abs. | 380    | 180  | 150         | 380       | 180  | 150         | 380  | 180  | 150                      |
| Supply pressure            | bar (g)   | 3      | 4    | 5           | 3         | 4    | 5           | 3    | 4    | 5                        |
| Air consumption            | NI/s      | 1.2    | 1.6  | 1.9         | 1.7       | 2.1  | 2.5         | 2.3  | 2.9  | 3.6                      |
| Working temperature        | °C        |        |      | -10 / +80   |           |      | -10 / +80   |      |      | -10 / +80                |
| Noise level                | dB(A)     |        |      | 72          |           |      | 72          |      |      | 76                       |
| Weight                     | g         |        |      | 144         |           |      | 145         |      |      | 150                      |
| A                          |           |        |      | 34.5        |           |      | 34.5        |      |      | 44.5                     |
| В                          |           |        |      | 20          |           |      | 20          |      |      | 30                       |
| C                          |           |        |      | 4.5         |           |      | 4.5         |      |      | 4.5                      |
| Spare parts                |           |        |      |             |           |      |             |      |      |                          |
| Sealing kit and reed valve | art.      |        |      | 00 KIT M 10 |           |      | 00 KIT M 14 |      |      | 00 <mark>KIT M 18</mark> |

## MULTI-STAGE VACUUM GENERATORS M 10, M 14 and M 18

### Air capacity (NI/s) at different vacuum levels (-Kpa)



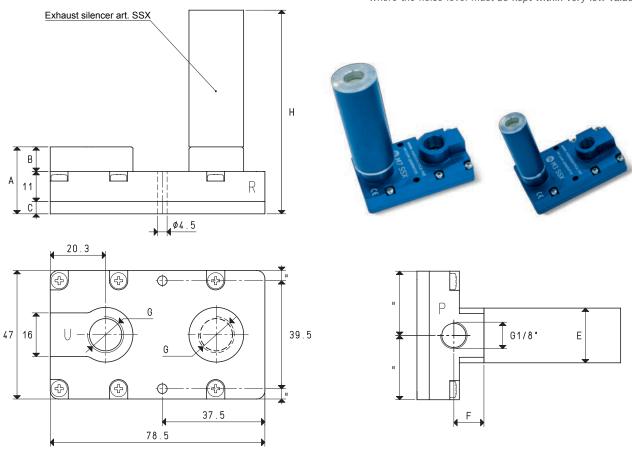





| Generator | Supply press. | Air consumption | Air capacity (NI/s) at different vacuum levels (-KPa)  Max. vacuum le |      |      |      |      |      |      |      |      |      |  |
|-----------|---------------|-----------------|-----------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|--|
| art.      | bar (g)       | NI/s            | 0                                                                     | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | -KPa |  |
| M 10      | 5.0           | 1.9             | 2.61                                                                  | 2.00 | 1.55 | 0.80 | 0.64 | 0.50 | 0.29 | 0.19 | 0.09 | 85   |  |
| M 14      | 5.0           | 2.5             | 3.50                                                                  | 2.33 | 1.72 | 1.00 | 0.89 | 0.67 | 0.35 | 0.24 | 0.11 | 85   |  |
| M 18      | 5.0           | 3.6             | 5.00                                                                  | 3.50 | 2.78 | 2.02 | 1.02 | 0.75 | 0.44 | 0.30 | 0.14 | 85   |  |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



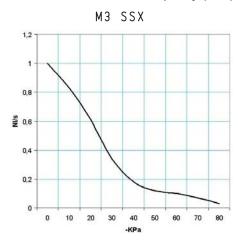

| Generator | Supply press. | Air consumption | Evacuation time (ms/I = s/m³) at different vacuum levels (-KPa) |    |     |     |     |     |      |      | Max. vacuum level |      |
|-----------|---------------|-----------------|-----------------------------------------------------------------|----|-----|-----|-----|-----|------|------|-------------------|------|
| art.      | bar (g)       | NI/s            | 10                                                              | 20 | 30  | 40  | 50  | 60  | 70   | 80   | 85                | -KPa |
| M 10      | 5.0           | 1.9             | 40                                                              | 93 | 188 | 371 | 629 | 918 | 1534 | 2731 | 3878              | 85   |
| M 14      | 5.0           | 2.5             | 30                                                              | 69 | 140 | 276 | 469 | 685 | 1144 | 2036 | 2892              | 85   |
| M 18      | 5.0           | 3.6             | 21                                                              | 48 | 98  | 193 | 327 | 478 | 799  | 1423 | 2020              | 85   |

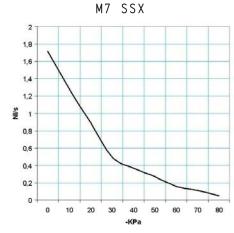
### **MULTI-STAGE VACUUM GENERATORS SERIES M., SSX**

These vacuum generators share the same technical features as the others of the M series described above. Their distinctive feature is their silent operation.

In fact, along with thye built-in silencer, they also have an external SSX silencer for a further noise reduction.

These generators are particularly recommended in work environments where the noise level must be kept within very low values.

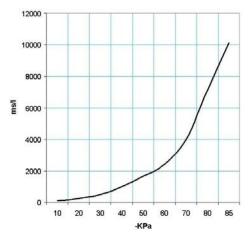


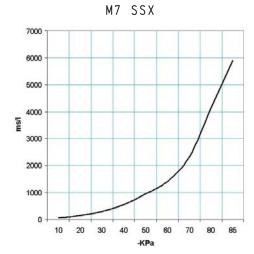




| P=COMPRESSED AIR CON       | NECTION R | =EXHAUST | U=VACL | JUM CONNECTION |            |     |     | v          |
|----------------------------|-----------|----------|--------|----------------|------------|-----|-----|------------|
| Art.                       |           |          |        |                | M 3 SSX    |     |     | M 7 SSX    |
| Quantity of sucked air     | cum/h     |          | 3.0    | 3.4            | 3.6        | 5.4 | 5.8 | 6.2        |
| Max. vacuum level          | -KPa      |          | 62     | 82             | 85         | 62  | 82  | 85         |
| Final pressure             | mbar abs. |          | 380    | 180            | 150        | 380 | 180 | 150        |
| Supply pressure            | bar (g)   |          | 3      | 4              | 5          | 3   | 4   | 5          |
| Air consumption            | NI/s      |          | 0.5    | 0.7            | 0.8        | 0.8 | 1.2 | 1.4        |
| Working temperature        | °C        |          |        |                | -10 / +80  |     |     | -10 / +80  |
| Noise level                | dB(A)     |          |        |                | 52         |     |     | 58         |
| Weight                     | g         |          |        |                | 109        |     |     | 111        |
| A                          |           |          |        |                | 24.5       |     |     | 25.5       |
| В                          |           |          |        |                | 9          |     |     | 10         |
| C                          |           |          |        |                | 4.5        |     |     | 4.5        |
| E                          | Ø         |          |        |                | 20         |     |     | 29         |
| F                          |           |          |        |                | 11         |     |     | 12         |
| G                          | Ø         |          |        |                | G1/4"      |     |     | G3/8"      |
| Н                          |           |          |        |                | 74.5       |     |     | 97.5       |
| Spare parts                |           |          |        |                |            |     |     |            |
| Silencer                   | art.      |          |        |                | SSX 1/4"   |     |     | SSX 3/8"   |
| Sealing kit and reed valve | art.      |          |        |                | 00 KIT M 3 |     |     | 00 KIT M 7 |

### MULTI-STAGE VACUUM GENERATORS M 3 SSX and M 7 SSX

### Air capacity (NI/s) at different vacuum levels (-Kpa)

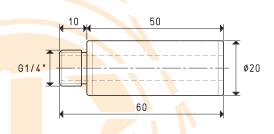


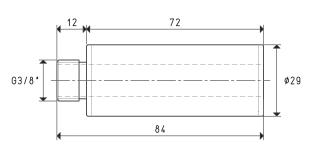

| Generator | Supply press. | Air consumption | Air capacity (NI/s) at different vacuum levels (-KPa)  Max. vacuum level |      |      |      |      |      |      |      |      |      |  |
|-----------|---------------|-----------------|--------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|--|
| art.      | bar (g)       | NI/s            | 0                                                                        | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | -KPa |  |
| M 3 SSX   | 5.0           | 0.8             | 1.00                                                                     | 0.83 | 0.61 | 0.34 | 0.18 | 0.12 | 0.10 | 0.07 | 0.03 | 85   |  |
| M 7 SSX   | 5.0           | 1.4             | 1.72                                                                     | 1.28 | 0.89 | 0.50 | 0.37 | 0.27 | 0.16 | 0.11 | 0.05 | 85   |  |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)

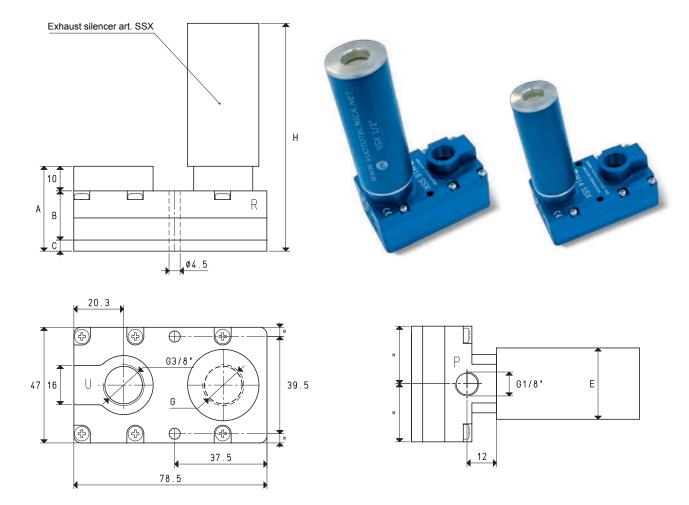
M3 SSX







| Generator | Supply press. | Air consumption | Evacuation time (ms/l = s/m³) at different vacuum levels (-KPa) Max. v |     |     |     |      |      |      |      |       |      |  |
|-----------|---------------|-----------------|------------------------------------------------------------------------|-----|-----|-----|------|------|------|------|-------|------|--|
| art.      | bar (g)       | NI/s            | 10                                                                     | 20  | 30  | 40  | 50   | 60   | 70   | 80   | 85    | -KPa |  |
| M 3 SSX   | 5.0           | 0.8             | 106                                                                    | 244 | 491 | 969 | 1642 | 2398 | 4004 | 7128 | 10122 | 85   |  |
| M 7 SSX   | 5.0           | 1.4             | 61                                                                     | 142 | 285 | 563 | 954  | 1394 | 2328 | 4144 | 5885  | 85   |  |

### **Accessories included**


Silencer art. SSX 1/4" on M3

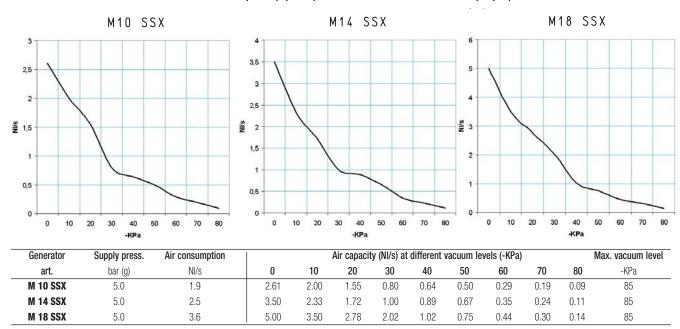


### Silencer art. SSX 3/8" on M7

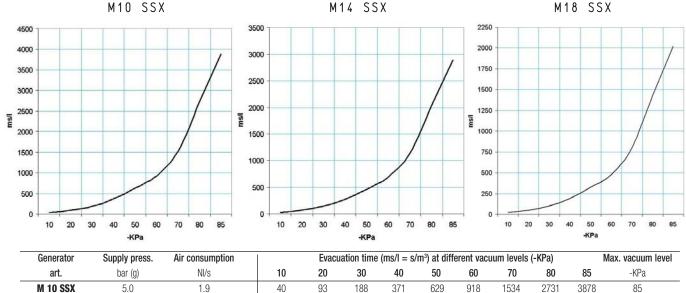


8.34





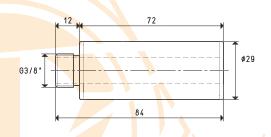

| P=COMPRESSED AIR CO        | NNECTION  | R=EXHAUST |     | U=VACUUM CC |      |      |             |      |      |             |
|----------------------------|-----------|-----------|-----|-------------|------|------|-------------|------|------|-------------|
| Art.                       |           |           |     | M 10 SSX    |      |      | M 14 SSX    |      |      | M 18 SSX    |
| Quantity of sucked air     | cum/h     | 7.7       | 8.5 | 9.4         | 10.2 | 11.5 | 12.6        | 14.8 | 16.5 | 18.0        |
| Max. vacuum level          | -KPa      | 62        | 82  | 85          | 62   | 82   | 85          | 62   | 82   | 85          |
| Final pressure             | mbar abs. | 380       | 180 | 150         | 380  | 180  | 150         | 380  | 180  | 150         |
| Supply pressure            | bar (g)   | 3         | 4   | 5           | 3    | 4    | 5           | 3    | 4    | 5           |
| Air consumption            | NI/s      | 1.2       | 1.6 | 1.9         | 1.7  | 2.1  | 2.5         | 2.3  | 2.9  | 3.6         |
| Working temperature        | °C        |           |     | -10 / +80   |      |      | -10 / +80   |      |      | -10 / +80   |
| Noise level                | dB(A)     |           |     | 60          |      |      | 62          |      |      | 66          |
| Weight                     | g         |           |     | 144         |      |      | 145         |      |      | 150         |
| A                          |           |           |     | 34.5        |      |      | 34.5        |      |      | 44.5        |
| В                          |           |           |     | 20          |      |      | 20          |      |      | 30          |
| C                          |           |           |     | 4.5         |      |      | 4.5         |      |      | 4.5         |
| E                          | Ø         |           |     | 29          |      |      | 29          |      |      | 35          |
| G                          | Ø         |           |     | G3/8"       |      |      | G3/8"       |      |      | G1/2"       |
| Н                          |           |           |     | 106.5       |      |      | 106.5       |      |      | 136.5       |
| Spare parts                |           |           |     |             |      |      |             |      |      |             |
| Silencer                   | art.      |           |     | SSX 3/8"    |      |      | SSX 3/8"    |      |      | SSX 1/2"    |
| Sealing kit and reed valve | art.      |           |     | 00 KIT M 10 |      |      | 00 KIT M 14 |      |      | 00 KIT M 18 |


Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

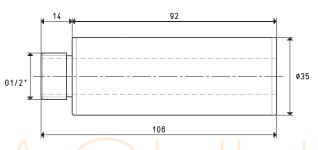
### MULTI-STAGE VACUUM GENERATORS M 10 SSX, M 14 SSX and M 18 SSX

### Air capacity (NI/s) at different vacuum levels (-Kpa)




### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)




| Generator | Supply press. | Air consumption |    | Evacu | ation time | (ms/l = s/l) | m³) at diff | erent vacı | ıum levels | (-KPa) |      | Max. vacuum level |
|-----------|---------------|-----------------|----|-------|------------|--------------|-------------|------------|------------|--------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10 | 20    | 30         | 40           | 50          | 60         | 70         | 80     | 85   | -KPa              |
| M 10 SSX  | 5.0           | 1.9             | 40 | 93    | 188        | 371          | 629         | 918        | 1534       | 2731   | 3878 | 85                |
| M 14 SSX  | 5.0           | 2.5             | 30 | 69    | 140        | 276          | 469         | 685        | 1144       | 2036   | 2892 | 85                |
| M 18 SSX  | 5.0           | 3.6             | 21 | 48    | 98         | 193          | 327         | 478        | 799        | 1423   | 2020 | 85                |

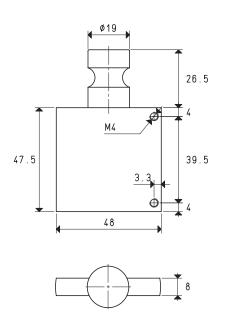
### **Accessories included**

Silencer art. SSX 1/2" on M10 and M14



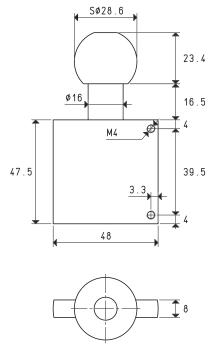
### Silencer art. SSX 1/2" on M18




www.vuototecnica.net drawings available at 30

### FIXING SUPPORTS FOR MULTI-STAGE VACUUM GENERATORS

The supports described in this page are made with anodised aluminium as a standard, but, upon request, they can be supplied in the stainless steel version.


These supports are for fixing the multi-stage vacuum generators to the machine via a cylindrical slotted pin or a ball pin housed in the machine itself.

They are suited for robotic gripping systems and they allow for an easy installation of the vacuum generators on the profiles used in the automotive sector.





| Art.      | For                            | Material        | Weight |
|-----------|--------------------------------|-----------------|--------|
|           | generators                     |                 | g      |
| 00 FCH 23 | M 3 - M 7 - M 10 - M 14 - M 18 | aluminium       | 63     |
| 00 FCH 22 | M 3 - M 7 - M 10 - M 14 - M 18 | stainless steel | 191    |





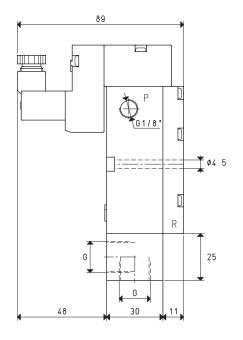
| Art.      | For                            | Material                 | Weight |
|-----------|--------------------------------|--------------------------|--------|
| 7.1.1.    | generators                     |                          | g      |
| 00 FCH 13 | M 3 - M 7 - M 10 - M 14 - M 18 | alu <mark>miniu</mark> m | 85     |
| 00 FCH 12 | M 3 - M 7 - M 10 - M 14 - M 18 | stainless steel          | 256    |

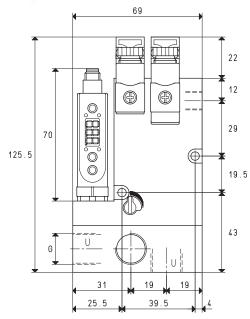
These generators are true independent vacuum units that can control an entire vacuum gripping system. Their distinctive features are their compact size and great suction capacity.

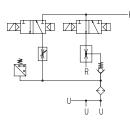
They are composed of a monobloc anodised aluminium structure onto which are assembled:

- A modular and silenced multi-stage vacuum generator.
- A micro solenoid valve for supplying compressed air to the generator.
- A micro solenoid valve for blowing the exhaust compressed air.
- An adjustable flow regulator for dosing the exhaust air.
- A unidirectional check valve, located on the suction inlet, for maintaining the vacuum in case of electricity failure.
- A digital vacuum switch provided with display and commutation LEDs, for managing the compressed air supply and for signalling the safety cycle start-up.
- An anodised aluminium manifold provided with vacuum connections and a built-in filtre easy to inspect.

By activating the compressed air solenoid valve, the generator creates vacuum at the service. Once the preset maximum value is reached, the vacuum switch acts on the solenoid valve electric coil and interrupts the air supply, restoring it when the vacuum value returns below the minimum value.


Along with maintaining the vacuum level within preset safety values (hysteresis), this modulation allows saving a considerable amount of compressed air.


A second vacuum switch signal, also adjustable and independent from the first, can be used to start up the cycle when the vacuum level is suitable for the application. Once the working cycle is completed, the compressed air supply is deactivated and, at the same time, the ejection micro solenoid valve is activated for a quick restoration of the atmospheric pressure at the application.

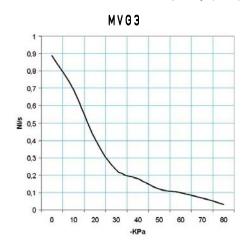

MVG multi-function vacuum generators can be installed in any position and are suited for interconnecting vacuum gripping systems for handling sheet steel, glass, marble, ceramic, plastic, cardboard, wood, etc., and, in particular, for the industrial robotics sector which requires equipment with excellent performance and with size and weight reduced to the minimum.

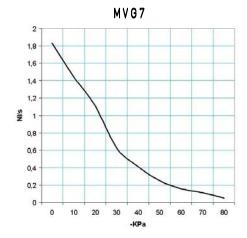






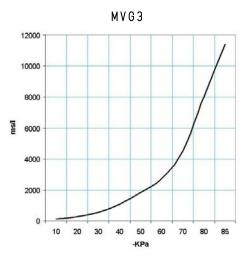


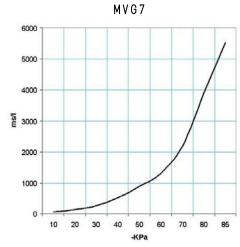




| P=COMPRESSED AIR CONNEC             | TION R=EXHAL | JST U=VAC | JUM CONNECTION | ON        |     |     | U U       |
|-------------------------------------|--------------|-----------|----------------|-----------|-----|-----|-----------|
| Art.                                |              |           |                | MVG 3     |     |     | MVG 7     |
| Quantity of sucked air              | cum/h        | 2.8       | 3.0            | 3.2       | 5.6 | 6.0 | 6.6       |
| Max. vacuum level                   | -KPa         | 50        | 70             | 85        | 50  | 70  | 85        |
| Final pressure                      | mbar abs.    | 500       | 300            | 150       | 500 | 300 | 150       |
| Supply pressure                     | bar (g)      | 3         | 4              | 5         | 3   | 4   | 5         |
| Air consumption                     | NI/s         | 0.5       | 0.6            | 0.8       | 0.8 | 1.0 | 1.3       |
| Max. quantity of blown air at 5 bar | I/min        |           |                | 205       |     |     | 205       |
| Supply solenoid valve position      | NO/NC        |           |                | NO        |     |     | NO        |
| Ejection solenoid valve position    | NC           |           |                | NC        |     |     | NC        |
| Supply voltage                      | V            |           |                | 24 DC     |     |     | 24 DC     |
| Electric absorption                 | W            |           |                | 2 x 2     |     |     | 2 x 2     |
| Vacuum switch output                |              |           |                | PNP       |     |     | PNP       |
| Class of protection                 | IP           |           |                | 65        |     |     | 65        |
| Working temperature                 | °C           |           |                | -10 / +60 |     |     | -10 / +60 |
| Noise level                         | dB(A)        |           |                | 66        |     |     | 70        |
| Weight                              | Kg           |           |                | 0.666     |     |     | 0.670     |
| G                                   | Ø            |           |                | G1/4"     |     |     | G3/8"     |

**Note:** To order the generator: with supply solenoid valve NC, please indicate the code MVG .. NC; without the digital vacuum switch, please indicate the code MVG .. SV; without the ejection solenoid valve, please indicate the code MVG .. SC.

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.


### Air capacity (NI/s) at different vacuum levels (-Kpa)

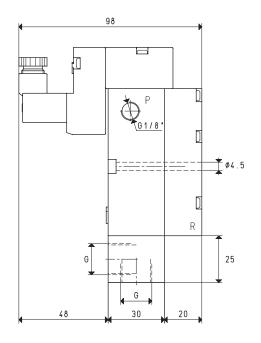


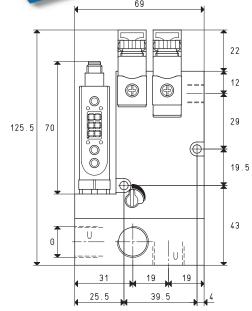


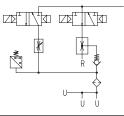

| Generator | Supply press. | Air consumption | Air capacity (NI/s) at different vacuum levels (-KPa)  Max. vacuum level |      |      |      |      |      |      | Max. vacuum level |      |      |
|-----------|---------------|-----------------|--------------------------------------------------------------------------|------|------|------|------|------|------|-------------------|------|------|
| art.      | bar (g)       | NI/s            | 0                                                                        | 10   | 20   | 30   | 40   | 50   | 60   | 70                | 80   | -KPa |
| MVG 3     | 5.0           | 0.8             | 0.89                                                                     | 0.69 | 0.41 | 0.23 | 0.18 | 0.12 | 0.10 | 0.07              | 0.03 | 85   |
| MVG 7     | 5.0           | 1.3             | 1.72                                                                     | 1.44 | 1.11 | 0.63 | 0.41 | 0.25 | 0.16 | 0.11              | 0.05 | 85   |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)







| Generator | Supply press. | Air consumption |     | Evacu | ation time | (ms/l = s/ | /m³) at diff | erent vacu | um levels | (-KPa) |       | Max. vacuum level |
|-----------|---------------|-----------------|-----|-------|------------|------------|--------------|------------|-----------|--------|-------|-------------------|
| art.      | bar (g)       | NI/s            | 10  | 20    | 30         | 40         | 50           | 60         | 70        | 80     | 85    | -KPa              |
| MVG 3     | 5.0           | 0.8             | 119 | 274   | 552        | 1088       | 1845         | 2694       | 4499      | 8009   | 11373 | 85                |
| MVG 7     | 5.0           | 1.3             | 58  | 133   | 268        | 529        | 897          | 1310       | 2188      | 3895   | 5531  | 85                |


### ACCESSORIES AND SPARE PARTS UPON REQUEST

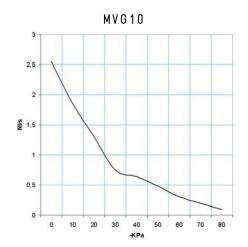
| ACCESSORIES AND SPARE PARTS UPON REQUEST                          |      |              |              |
|-------------------------------------------------------------------|------|--------------|--------------|
| Art.                                                              |      | MVG 3        | MVG 7        |
| Sealing kit and reed valve                                        | art. | 00 KIT MVG 3 | 00 KIT MVG 7 |
| Electric connection cable with axial connector for vacuum switch  | art. | 00 12 20     |              |
| Electric connection cable with radial connector for vacuum switch | art. | 00 12 21     |              |
| Electric connection cable set with built-in energy                |      |              |              |
| Saving device NO and connectors                                   | art. | 00 15 202    |              |
| Electric connection cable set with built-in energy                |      |              |              |
| Saving device NC and connectors                                   | art. | 00 15 203    |              |
| Digital v <mark>acuum s</mark> witch                              | art. | 12 10 10     |              |
| Supply s <mark>olenoid</mark> valve NO                            | art. | 00 15 155    |              |
| Supply s <mark>olenoid</mark> valve NC                            | art. | 00 15 156    |              |

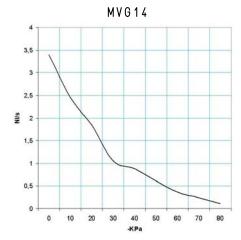









| P=COMPRESSED AIR CONNECT                | ION R=EXHAUST | U=VAC | UUM CONNECTION |           |      |      | ΰΰ        |
|-----------------------------------------|---------------|-------|----------------|-----------|------|------|-----------|
| Art.                                    |               |       |                | MVG 10    |      |      | MVG 14    |
| Quantity of sucked air                  | cum/h         | 7.7   | 8.4            | 9.2       | 10.2 | 11.2 | 12.2      |
| Max. vacuum level                       | -KPa          | 50    | 70             | 85        | 50   | 70   | 85        |
| Final pressure                          | mbar abs.     | 500   | 300            | 150       | 500  | 300  | 150       |
| Supply pressure                         | bar (g)       | 3     | 4              | 5         | 3    | 4    | 5         |
| Air consumption                         | NI/s          | 0.9   | 1.3            | 1.7       | 1.3  | 1.7  | 2.1       |
| Max. quantity of blown air at 5 bar (g) | I/min         |       |                | 205       |      |      | 205       |
| Supply solenoid valve position          | NO/NC         |       |                | NO        |      |      | NO        |
| <b>Ejection solenoid valve position</b> | NC            |       |                | NC        |      |      | NC        |
| Supply voltage                          | ٧             |       |                | 24 DC     |      |      | 24 DC     |
| Electric absorption                     | W             |       |                | 1.4 x 2   |      |      | 1.4 x 2   |
| Vacuum switch output                    |               |       |                | PNP       |      |      | PNP       |
| Class of protection                     | IP            |       |                | 65        |      |      | 65        |
| Working temperature                     | °C            |       |                | -10 / +60 |      |      | -10 / +60 |
| Noise level                             | dB(A)         |       |                | 62        |      |      | 70        |
| Weight                                  | Kg            |       |                | 0.716     |      |      | 0.720     |
| G                                       | Ø             |       |                | G3/8"     |      |      | G3/8"     |


Note: To order the generator: with supply solenoid valve NC, please indicate the code MVG .. NC; without the digital vacuum switch, please indicate the code MVG  $\dots$  SV; without the ejection solenoid valve, please indicate the code MVG  $\ldots$  SC.

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

### MULTI-FUNCTION VACUUM GENERATORS MVG 10 and MVG 14

### Air capacity (NI/s) at different vacuum levels (-Kpa)





| Generator | Supply press. | Air consumption |      |      | Air capacit | ty (NI/s) at | different | acuum le | vels (-KPa) |      |      | Max. vacuum level |
|-----------|---------------|-----------------|------|------|-------------|--------------|-----------|----------|-------------|------|------|-------------------|
| art.      | bar (g)       | NI/s            | 0    | 10   | 20          | 30           | 40        | 50       | 60          | 70   | 80   | -KPa              |
| MVG 10    | 5.0           | 1.7             | 2.55 | 1.85 | 1.30        | 0.75         | 0.64      | 0.48     | 0.30        | 0.20 | 0.09 | 85                |
| MVG 14    | 5.0           | 2.1             | 3.40 | 2.45 | 1.84        | 1.05         | 0.88      | 0.61     | 0.36        | 0.24 | 0.11 | 85                |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)

MVG10

4500


4000

3500

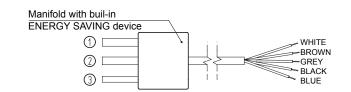
2500

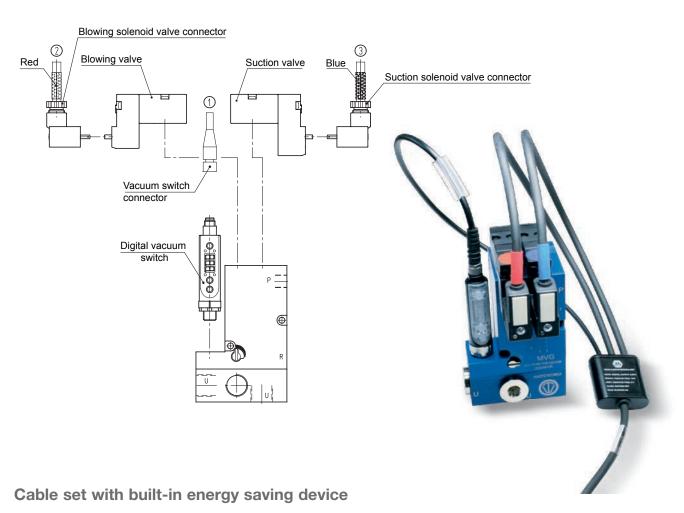
1500

1000



| Generator | Supply press. | Air consumption | 1  | Evacu | ation time | (ms/l = s/ | m³) at diff | erent vacu | ium levels | (-KPa) |      | Max. vacuum level |
|-----------|---------------|-----------------|----|-------|------------|------------|-------------|------------|------------|--------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10 | 20    | 30         | 40         | 50          | 60         | 70         | 80     | 85   | -KPa              |
| MVG 10    | 5.0           | 1.7             | 41 | 95    | 192        | 379        | 642         | 938        | 1567       | 2790   | 3962 | 85                |
| MVG 14    | 5.0           | 2.1             | 31 | 71    | 144        | 284        | 482         | 704        | 1175       | 2092   | 2971 | 85                |


### ACCESSORIES AND SPARE PARTS UPON REQUEST

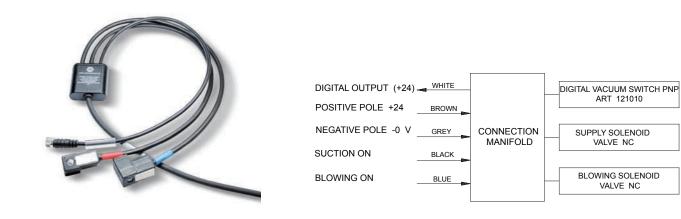

| 71002000111207111001711111001711240201                            |      |               |               |
|-------------------------------------------------------------------|------|---------------|---------------|
| Art.                                                              |      | MVG 10        | MVG 14        |
| Sealing kit and reed valve                                        | art. | 00 KIT MVG 10 | 00 KIT MVG 14 |
| Electric connection cable with axial connector for vacuum switch  | art. | 00 12 20      |               |
| Electric connection cable with radial connector for vacuum switch | art. | 00 12 21      |               |
| Electric connection cable set with built-in energy                |      |               |               |
| Saving device NO and connectors                                   | art. | 00 15 202     |               |
| Electric <mark>connect</mark> ion cable set with built-in energy  |      |               |               |
| Saving d <mark>evice N</mark> C and connec <mark>tors</mark>      | art. | 00 15 203     |               |
| Digital v <mark>acuum s</mark> witch                              | art. | 12 10 10      |               |
| Supply s <mark>olenoid</mark> valve NO                            | art. | 00 15 155     |               |
| Supply s <mark>olenoid</mark> valve NC                            | art. | 00 15 156     |               |

### 8

# 3D drawings available at www.vuototecnica.net

# ACCESSORIES AND SPARE PARTS FOR MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS SERIES MVG








| Art.      | Description                                                     |  |
|-----------|-----------------------------------------------------------------|--|
| 00 15 202 | Cable set with built-in energy saving device for connection to: |  |
|           | - Digital vacuum switch                                         |  |
|           | - Supply solenoid valve NO                                      |  |
|           | - Ejection solenoid valve NC                                    |  |
|           | Cable length = 5 mt.                                            |  |
|           |                                                                 |  |

# ACCESSORIES AND SPARE PARTS FOR MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS SERIES MVG

### Cable set with built-in energy saving device



| Art.      | Description                                                     |
|-----------|-----------------------------------------------------------------|
| 00 15 203 | Cable set with built-in energy saving device for connection to: |
|           | - Digital vacuum switch                                         |
|           | - Supply solenoid valve NC                                      |
|           | - Ejection solenoid valve NC                                    |
|           | Cable length= 5 mt.                                             |

### Connector

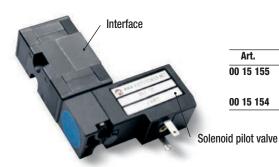


| Art.      | Description                                 |
|-----------|---------------------------------------------|
| 00 15 157 | Connector with LED for micro solenoid valve |

### Cable with axial connector

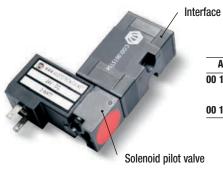


| Art.     | Description                                    |
|----------|------------------------------------------------|
| 00 12 20 | Electric connection cable with axial connector |
|          | for digital vacuum switch                      |


### Cable with radial connector



| Art.     | Description                                     |
|----------|-------------------------------------------------|
| 00 12 21 | Electric connection cable with radial connector |
|          | for digital vacuum switch                       |


# ACCESSORIES AND SPARE PARTS FOR MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS SERIES MVG

### Supply solenoid valve NO



| Art.      | Description                                                        |
|-----------|--------------------------------------------------------------------|
| 00 15 155 | NO solenoid pilot valve with built-in low-absorption electric coil |
| 00 15 154 | Interface                                                          |

### Supply solenoid valve NC



Art. Description

00 15 156 NC solenoid pilot valve with built-in low-absorption electric coil

00 15 154 Interface



### Ejection solenoid valve spare plate



| Art.      | Description                         | Description |  |  |
|-----------|-------------------------------------|-------------|--|--|
| 00 15 178 | Ejection solenoid valve spare plate |             |  |  |

### Digital vacuum switch



| Art.     | Description                      |       | 7 |  |  |
|----------|----------------------------------|-------|---|--|--|
| 12 10 10 | Digital vacu <mark>um s</mark> w | vitch |   |  |  |

## MODULAR MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS SERIES GVMM

Modular multi-function vacuum generators are true independent vaccum units that offer an entire vacuum control system.

They feature a reduced thickness and weight compared to their suction capacity and they have been designed to be assembled with screws to one or more intermediate modules MI. The original internal connection system for the compressed air supply allows communication with no need for external manifolds.

This modular system allows increasing the number of independent vacuum units according to the requirements. In fact, you can order a multi-function vacuum generator and the intermediate modules with the desired capacities, already assembled, or you can assemble one or more intermediate modules to the GVMM generator that has already been installed on the machine, without having to make particular modifications. GVMM vacuum generators are composed of an anodised aluminium monobloc with lid, inside of which the silenced multiple ejectors are installed and the vacuum chamber and the compressed air supply connection are contained.

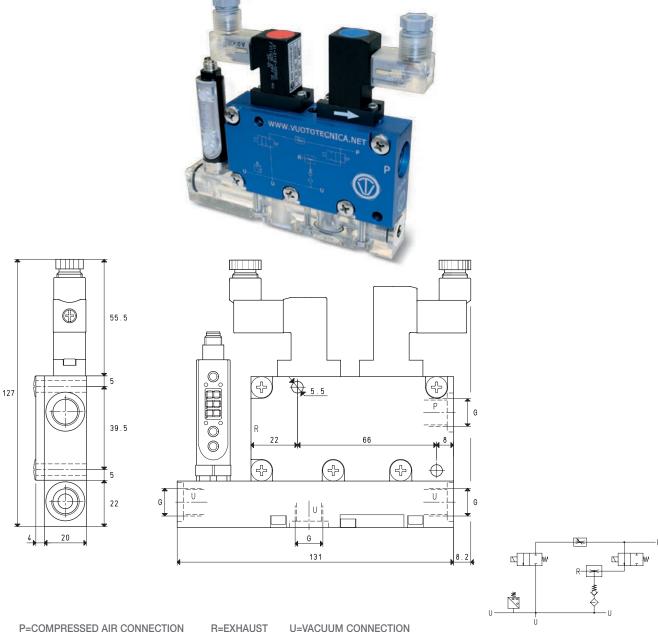
The following items are assembled externally:

- A micro solenoid valve for supplying compressed air to the generator.
- A micro solenoid valve for blowing the exhaust compressed air.
- An adjustable flow regulator for dosing the exhaust air.
- A digital vacuum switch with display and commutation LEDs for managing the compressed air supply and for signalling the safety cycle start-up.
- An anodised aluminium or transparent plexiglas manifold provided with vacuum connections with built-in suction filtre, easy to inspect, and a check valve for maintaining the vacuum in case of electricity or compressed air failure.

By activating the compressed air solenoid valve, the generator creates vacuum at the service. Once the preset maximum value is reached, the vacuum switch acts on the solenoid valve electric coil and interrupts the air supply, restoring it when the vacuum value returns below the minimum value.

Along with maintaining the vacuum level within preset safety values (hysteresis), this modulation allows saving a considerable amount of compressed air.

A second vacuum switch signal, also adjustable and independent from the first, can be used to start up the cycle when the vacuum level is suitable for the application. Once the working cycle is completed, the compressed air supply is deactivated and, at the same time, the ejection micro solenoid valve is activated for a quick restoration of the atmospheric pressure at the application.


GVMM multi-function vacuum generators can be installed in any position and are suited for interconnecting vacuum gripping systems for handling sheet steel, glass, marble, ceramic, plastic, cardboard, wood, etc., and, in particular, for the industrial robotics sector which requires eqipment with excellent performance and several independent vacuum units for controlling several applications but with reduced size and weight.

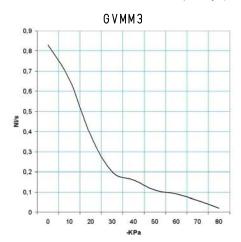


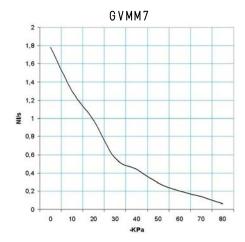
### 8

# 3D drawings available at www.vuototecnica.net

# MODULAR MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS GVMM 3 and GVMM 7

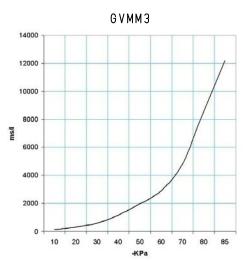


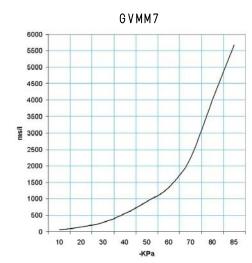

| P=COMPRESSED AIR CONNECT                | ION R=EXHAUST | U=VACI | JUM CONNECTION |           |     | U   |           |
|-----------------------------------------|---------------|--------|----------------|-----------|-----|-----|-----------|
| Art.                                    |               |        |                | GVMM 3    |     |     | GVMM 7    |
| Quantity of sucked air                  | cum/h         | 2.6    | 2.8            | 3.0       | 5.5 | 6.0 | 6.4       |
| Max. vacuum level                       | -KPa          | 64     | 85             | 85        | 60  | 80  | 85        |
| Final pressure                          | mbar abs.     | 360    | 150            | 150       | 400 | 200 | 150       |
| Supply pressure                         | bar (g)       | 3      | 4              | 5         | 3   | 4   | 5         |
| Air consumption                         | NI/s          | 0.6    | 0.7            | 8.0       | 0.9 | 1.1 | 1.3       |
| Max. quantity of blown air at 5 bar (g) | I/min         |        |                | 128       |     |     | 128       |
| Supply solenoid valve position          | NO/NC         |        |                | NO        |     |     | NO        |
| Electric absorption                     | W             |        |                | 2         |     |     | 2         |
| <b>Ejection solenoid valve position</b> | NC            |        |                | NC        |     |     | NC        |
| Electric absorption                     | W             |        |                | 4         |     |     | 4         |
| Supply voltage                          | V             |        |                | 24DC      |     |     | 24DC      |
| Vacuum switch output                    |               |        |                | PNP       |     |     | PNP       |
| Class of protection                     | IP            |        |                | 65        |     |     | 65        |
| Working temperature                     | °C            |        |                | -10 / +60 |     |     | -10 / +60 |
| Noise level                             | dB(A)         |        |                | 66        |     |     | 70        |
| Weight                                  | g             |        |                | 420       |     |     | 420       |
| G                                       | Ø             |        |                | G1/4"     |     |     | G1/4"     |


**Note:** To order the generator: with supply solenoid valve NC, please indicate the code GVMM .. NC; without the digital vacuum switch, please indicate the code GVMM .. SV.

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

# MODULAR MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS GVMM 3 and GVMM 7


### Air capacity (NI/s) at different vacuum levels (-Kpa)

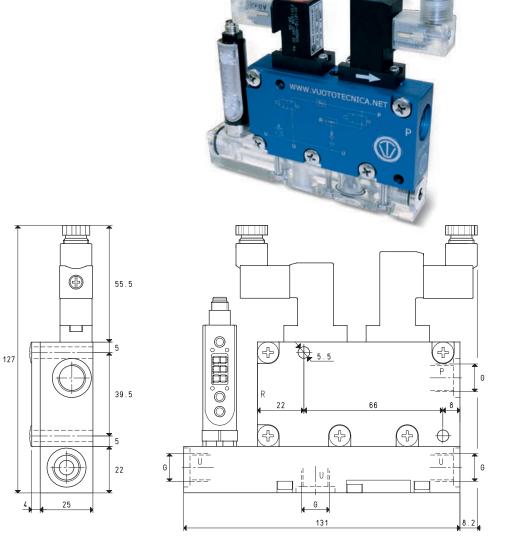


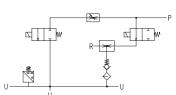



| Generator | Supply press. | Air consumption | Air capacity (NI/s) at different vacuum levels (-KPa)  Max. vacuum leve |      |      |      |      |      |      | Max. vacuum level |      |      |
|-----------|---------------|-----------------|-------------------------------------------------------------------------|------|------|------|------|------|------|-------------------|------|------|
| art.      | bar (g)       | NI/s            | 0                                                                       | 10   | 20   | 30   | 40   | 50   | 60   | 70                | 80   | -KPa |
| GVMM 3    | 5.0           | 0.8             | 0.83                                                                    | 0.66 | 0.38 | 0.20 | 0.16 | 0.11 | 0.09 | 0.06              | 0.02 | 85   |
| GVMM 7    | 5.0           | 1.3             | 1.78                                                                    | 1.30 | 0.98 | 0.56 | 0.44 | 0.29 | 0.20 | 0.14              | 0.06 | 85   |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)







| Generator | Supply press. | Air consumption | Evacuation time (ms/l = s/m³) at different vacuum levels (-KPa)  Max. vacuum levels |     |     |      |      |      | Max. vacuum level |      |       |      |
|-----------|---------------|-----------------|-------------------------------------------------------------------------------------|-----|-----|------|------|------|-------------------|------|-------|------|
| art.      | bar (g)       | NI/s            | 10                                                                                  | 20  | 30  | 40   | 50   | 60   | 70                | 80   | 85    | -KPa |
| GVMM 3    | 5.0           | 0.8             | 128                                                                                 | 294 | 592 | 1167 | 1978 | 2889 | 4824              | 8588 | 12195 | 85   |
| GVMM 7    | 5.0           | 1.3             | 59                                                                                  | 137 | 275 | 543  | 921  | 1344 | 2245              | 3997 | 5676  | 85   |

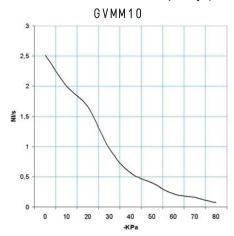
### ACCESSORIES AND SPARE PARTS UPON REQUEST

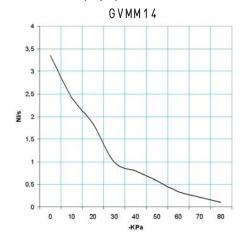
| ACCESSORIES AND SPARE PARTS UPON REQUEST                          |      |               |               |
|-------------------------------------------------------------------|------|---------------|---------------|
| Art.                                                              |      | GVMM 3        | GVMM 7        |
| Sealing kit and reed valve                                        | art. | 00 KIT GVMM 3 | 00 KIT GVMM 7 |
| Electric connection cable with axial connector for vacuum switch  | art. | 00 12 20      |               |
| Electric connection cable with radial connector for vacuum switch | art. | 00 12 21      |               |
| Electric connection cable set with built-in energy                |      |               |               |
| Saving device NO and connectors                                   | art. | 00 15 202     |               |
| Electric connection cable set with built-in energy                |      |               |               |
| Saving device NC and connectors                                   | art. | 00 15 203     |               |
| Digital vacuum switch                                             | art. | 12 10 10      |               |
| Supply s <mark>olenoid</mark> valve NO                            | art. | 00 15 176     |               |
| Supply s <mark>olenoid</mark> valve NC                            | art. | 00 15 175     |               |

# MODULAR MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS GVMM 10 and GVMM 14






| P=COMPRESSED AIR CONNECT                | ION R=EXHAUST | U=VAC | JUM CONNECTION |           |      | U    |           |
|-----------------------------------------|---------------|-------|----------------|-----------|------|------|-----------|
| Art.                                    |               |       |                | GVMM 10   |      |      | GVMM 14   |
| Quantity of sucked air                  | cum/h         | 7.5   | 8.3            | 9.1       | 10.1 | 11.1 | 12.1      |
| Max. vacuum level                       | -KPa          | 60    | 80             | 85        | 60   | 80   | 85        |
| Final pressure                          | mbar abs.     | 400   | 200            | 150       | 400  | 200  | 150       |
| Supply pressure                         | bar (g)       | 3     | 4              | 5         | 3    | 4    | 5         |
| Air consumption                         | NI/s          | 1.1   | 1.4            | 1.7       | 1.4  | 1.7  | 2.1       |
| Max. quantity of blown air at 5 bar (g) | I/min         |       |                | 128       |      |      | 128       |
| Supply solenoid valve position          | NO/NC         |       |                | NO        |      |      | NO        |
| Electric absorption                     | W             |       |                | 2         |      |      | 2         |
| <b>Ejection solenoid valve position</b> | NC            |       |                | NC        |      |      | NC        |
| Electric absorption                     | W             |       |                | 4         |      |      | 4         |
| Supply voltage                          | V             |       |                | 24DC      |      |      | 24DC      |
| Vacuum switch output                    |               |       |                | PNP       |      |      | PNP       |
| Class of protection                     | IP            |       |                | 65        |      |      | 65        |
| Working temperature                     | °C            |       |                | -10 / +60 |      |      | -10 / +60 |
| Noise level                             | dB(A)         |       |                | 70        |      |      | 72        |
| Weight                                  | g             |       |                | 460       |      |      | 460       |
| G                                       | Ø             |       |                | G1/4"     |      |      | G1/4"     |


**Note:** To order the generator: with supply solenoid valve NC, please indicate the code GVMM .. NC; without the digital vacuum switch, please indicate the code GVMM .. SV.

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

# MODULAR MULTI-STAGE AND MULTI-FUNCTION VACUUM GENERATORS GVMM 10 and GVMM 14

### Air capacity (NI/s) at different vacuum levels (-Kpa)





| Generator | Supply press. | Air consumption |      | Air capacity (NI/s) at different vacuum levels (-KPa)  Max. vacuum level |      |      |      |      |      |      |      |      |  |
|-----------|---------------|-----------------|------|--------------------------------------------------------------------------|------|------|------|------|------|------|------|------|--|
| art.      | bar (g)       | NI/s            | 0    | 10                                                                       | 20   | 30   | 40   | 50   | 60   | 70   | 80   | -KPa |  |
| GVMM 10   | 5.0           | 1.7             | 2.52 | 2.00                                                                     | 1.66 | 0.97 | 0.56 | 0.40 | 0.22 | 0.16 | 0.07 | 85   |  |
| GVMM 14   | 5.0           | 2.1             | 3.35 | 2.42                                                                     | 1.84 | 0.99 | 0.80 | 0.58 | 0.34 | 0.22 | 0.10 | 85   |  |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)

GVMM10

4500

3500

3000

2500

1500

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

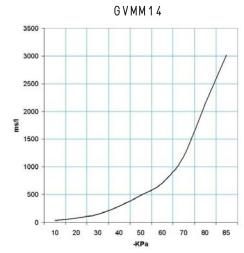
1000

1000

1000

1000

1000


1000

1000

1000

1000

1000



| Generator | Supply press. | Air consumption | Evacuation time (ms/l = s/m³) at different vacuum levels (-KPa)  Max. vacuum levels (-KPa) |    |     |     |     |     |      |      |      | Max. vacuum level |
|-----------|---------------|-----------------|--------------------------------------------------------------------------------------------|----|-----|-----|-----|-----|------|------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10                                                                                         | 20 | 30  | 40  | 50  | 60  | 70   | 80   | 85   | -KPa              |
| GVMM 10   | 5.0           | 1.7             | 42                                                                                         | 97 | 195 | 384 | 651 | 951 | 1589 | 2828 | 4016 | 85                |
| GVMM 14   | 5.0           | 2.1             | 31                                                                                         | 72 | 146 | 288 | 489 | 714 | 1193 | 2124 | 3016 | 85                |

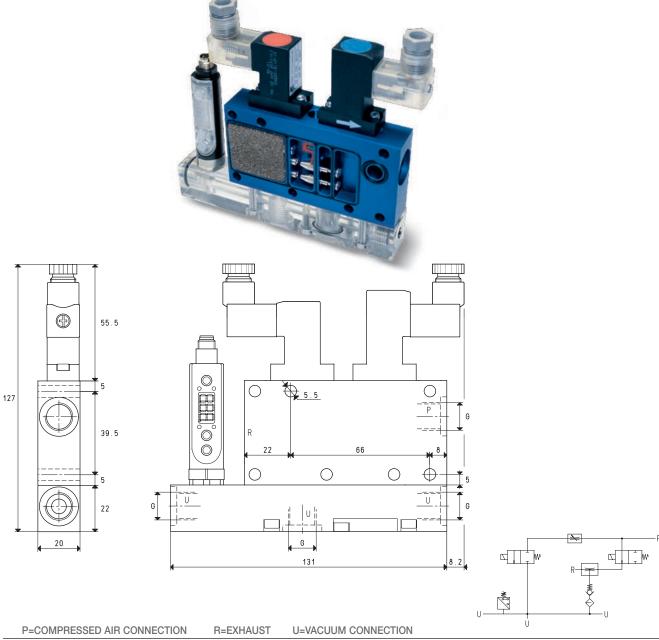
### ACCESSORIES AND SPARE PARTS UPON REQUEST

| ACCESSORIES AND SPARE PARTS UPON REQUEST                          |      |                |                |
|-------------------------------------------------------------------|------|----------------|----------------|
| Art.                                                              |      | GVMM 10        | GVMM 14        |
| Sealing kit and reed valve                                        | art. | 00 KIT GVMM 10 | 00 KIT GVMM 14 |
| Electric connection cable with axial connector for vacuum switch  | art. | 00 12 20       |                |
| Electric connection cable with radial connector for vacuum switch | art. | 00 12 21       |                |
| Electric connection cable set with built-in energy                |      |                |                |
| Saving device NO and connectors                                   | art. | 00 15 202      |                |
| Electric connection cable set with built-in energy                |      |                |                |
| Saving device NC and connectors                                   | art. | 00 15 203      |                |
| Digital vacuum switch                                             | art. | 12 10 10       |                |
| Supply s <mark>olenoid v</mark> alve NO                           | art. | 00 15 176      |                |
| Supply s <mark>olenoid v</mark> alve NC                           | art. | 00 15 175      |                |

## MULTI-STAGE, MULTI-FUNCTION AND MODULAR INTERMEDIATE VACUUM MODULES SERIES MI

Intermediate modules are non-independent multi-stage and multi-function vacuum generators to be assembled to the generators of the GVMM range.

Their thickness and weight are reduced to the maximum compared to their suction capacity and they have been designed to be enclosed between the lid and the base of the GVMM vacuum generator and fixed with screws. The internal connections for the compressed air supply allow communication between them and the basic generator, with no need for external manifolds.


This way, each module becomes an independent vacuum unit that can control an entire vacuum system.

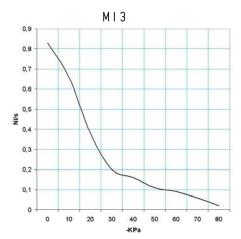
They can be ordered in the desired amount and capacity, either already assembled onto the GVMM multi-function vacuum generator, or separately, to be assembled to the GVMM generator previously installed onto the machine. In this case, we suggest ordering a screw kit suitable for the number of modules to be assembled.

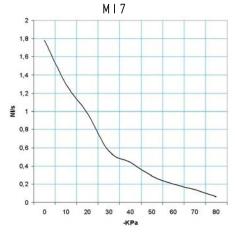
MI intermediate vacuum modules are made up of the same elements that compose GVMM generators, except for the lid. They operate and they are used as the GVMM multi-function vacuum generator onto which they are assembled.



### INTERMEDIATE VACUUM MODULES MI 3 and MI 7

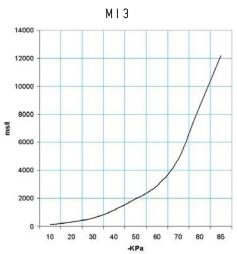


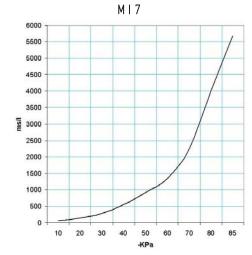

| N R=EXHAUST | U=VAC                                                                | JUM CONNECTION                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                      |                                                                                       | MI 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | MI 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| cum/h       | 2.6                                                                  | 2.8                                                                                   | 3.0       | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0                                                                                                                                                                                      | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -KPa        | 64                                                                   | 85                                                                                    | 85        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                                                                                                                                                                                       | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| mbar abs.   | 360                                                                  | 150                                                                                   | 150       | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                                                                                                                                                                                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bar (g)     | 3                                                                    | 4                                                                                     | 5         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NI/s        | 0.6                                                                  | 0.7                                                                                   | 8.0       | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I/min       |                                                                      |                                                                                       | 128       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NO/NC       |                                                                      |                                                                                       | NO        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| W           |                                                                      |                                                                                       | 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NC          |                                                                      |                                                                                       | NC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| W           |                                                                      |                                                                                       | 4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V           |                                                                      |                                                                                       | 24DC      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | 24DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                      |                                                                                       | PNP       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | PNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IP          |                                                                      |                                                                                       | 65        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| °C          |                                                                      |                                                                                       | -10 / +60 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | -10 / +60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| dB(A)       |                                                                      |                                                                                       | 66        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| g           |                                                                      |                                                                                       | 380       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ø           |                                                                      |                                                                                       | G1/4"     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | G1/4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | cum/h -KPa mbar abs. bar (g) NI/s I/min NO/NC W NC W V IP °C dB(A) g | cum/h 2.6 -KPa 64 mbar abs. 360 bar (g) 3 NI/s 0.6 I/min NO/NC W NC W V IP °C dB(A) g | cum/h     | cum/h         2.6         2.8         3.0           -KPa         64         85         85           mbar abs.         360         150         150           bar (g)         3         4         5           NI/s         0.6         0.7         0.8           I/min         128         NO           NO/NC         NO         NO           W         2         NC           W         4         V           24DC         PNP           IP         65         65           °C         -10 / +60         66           dB(A)         66         380 | Cum/h 2.6 2.8 3.0 5.5 -KPa 64 85 85 60 mbar abs. 360 150 150 400 bar (g) 3 4 5 3 NI/s 0.6 0.7 0.8 0.9  I/min 128  NO/NC NC NC W 2 NC NC NC W 4 V 24DC PNP IP 65 °C -10 / +60 dB(A) 9 380 | cum/h         2.6         2.8         3.0         5.5         6.0           -KPa         64         85         85         60         80           mbar abs.         360         150         150         400         200           bar (g)         3         4         5         3         4           NI/s         0.6         0.7         0.8         0.9         1.1           I/min         128           NO/NC         NO         NO           W         2         NC           W         4         4           V         24DC         PNP           IP         65         -10 / +60           dB(A)         66         380 |


Note: To order the generator: with supply solenoid valve NC, please indicate the code MI .. NC; without the digital vacuum switch, please indicate the code MI .. SV.

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

8.52


### Air capacity (NI/s) at different vacuum levels (-Kpa)

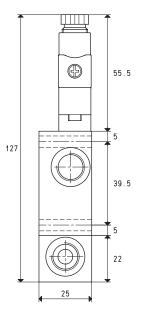


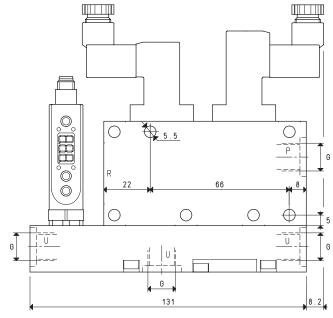


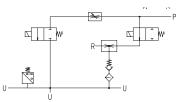

| Generator | Supply press. | Air consumption |      | Air capacity (NI/s) at different vacuum levels (-KPa)  Max. vacuum le |      |      |      |      |      |      |      |      |
|-----------|---------------|-----------------|------|-----------------------------------------------------------------------|------|------|------|------|------|------|------|------|
| art.      | bar (g)       | NI/s            | 0    | 10                                                                    | 20   | 30   | 40   | 50   | 60   | 70   | 80   | -KPa |
| MI 3      | 5.0           | 0.8             | 0.83 | 0.66                                                                  | 0.38 | 0.20 | 0.16 | 0.11 | 0.09 | 0.06 | 0.02 | 85   |
| MI 7      | 5.0           | 1.3             | 1.78 | 1.30                                                                  | 0.98 | 0.56 | 0.44 | 0.29 | 0.20 | 0.14 | 0.06 | 85   |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)







| Generator | Supply press. | Air consumption |     | Evacu | ation time | (ms/l = s) | /m³) at diff | ferent vacu | um levels | (-KPa) |       | Max. vacuum level |
|-----------|---------------|-----------------|-----|-------|------------|------------|--------------|-------------|-----------|--------|-------|-------------------|
| art.      | bar (g)       | NI/s            | 10  | 20    | 30         | 40         | 50           | 60          | 70        | 80     | 85    | -KPa              |
| MI 3      | 5.0           | 0.8             | 128 | 294   | 592        | 1167       | 1978         | 2889        | 4824      | 8588   | 12195 | 85                |
| MI 7      | 5.0           | 1.3             | 59  | 137   | 275        | 543        | 921          | 1344        | 2245      | 3997   | 5676  | 85                |


|      | MI 3                                    | MI 7                                                |
|------|-----------------------------------------|-----------------------------------------------------|
| art. | 00 KIT MI 3                             | 00 KIT MI 7                                         |
| art. |                                         | 00 12 20                                            |
| art. |                                         | 00 12 21                                            |
|      |                                         |                                                     |
| art. |                                         | 00 15 202                                           |
|      |                                         |                                                     |
| art. |                                         | 00 15 203                                           |
| art. |                                         | 12 10 10                                            |
| art. |                                         | 00 15 176                                           |
| art. |                                         | 00 15 175                                           |
|      | art. art. art. art. art. art. art. art. | art. 00 KIT MI 3 art. art. art. art. art. art. art. |

### INTERMEDIATE VACUUM MODULES MI 10 and MI 14

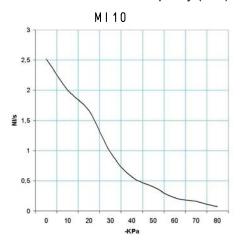


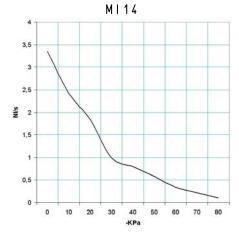






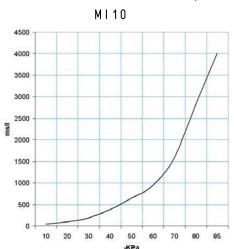
| P=COMPRESSED AIR CONNECTI               | ON R=EXHAUST | U=VACI | JUM CONNECTION |           | v    |      |           |
|-----------------------------------------|--------------|--------|----------------|-----------|------|------|-----------|
| Art.                                    |              |        |                | MI 10     |      |      | MI 14     |
| Quantity of sucked air                  | cum/h        | 7.5    | 8.3            | 9.1       | 10.1 | 11.1 | 12.1      |
| Max. vacuum level                       | -KPa         | 60     | 80             | 85        | 60   | 80   | 85        |
| Final pressure                          | mbar abs.    | 400    | 200            | 150       | 400  | 200  | 150       |
| Supply pressure                         | bar (g)      | 3      | 4              | 5         | 3    | 4    | 5         |
| Air consumption                         | NI/s         | 1.1    | 1.4            | 1.7       | 1.4  | 1.7  | 2.1       |
| Max. quantity of blown air at 5 bar (g) | I/min        |        |                | 128       |      |      | 128       |
| Supply solenoid valve position          | NO/NC        |        |                | NO        |      |      | NO        |
| Electric absorption                     | W            |        |                | 2         |      |      | 2         |
| <b>Ejection solenoid valve position</b> | NC           |        |                | NC        |      |      | NC        |
| Electric absorption                     | W            |        |                | 4         |      |      | 4         |
| Supply voltage                          | ٧            |        |                | 24DC      |      |      | 24DC      |
| Vacuum switch output                    |              |        |                | PNP       |      |      | PNP       |
| Class of protection                     | IP           |        |                | 65        |      |      | 65        |
| Working temperature                     | °C           |        |                | -10 / +60 |      |      | -10 / +60 |
| Noise level                             | dB(A)        |        |                | 70        |      |      | 72        |
| Weight                                  | g            |        |                | 410       |      |      | 410       |
| G                                       | Ø            |        |                | G1/4"     |      |      | G1/4"     |

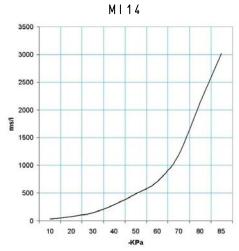

**Note:** To order the generator: with supply solenoid valve NC, please indicate the code MI .. NC; without the digital vacuum switch, please indicate the code MI .. SV.


Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

### 8

# 3D drawings available at www.vuototecnica.net


### Air capacity (NI/s) at different vacuum levels (-Kpa)

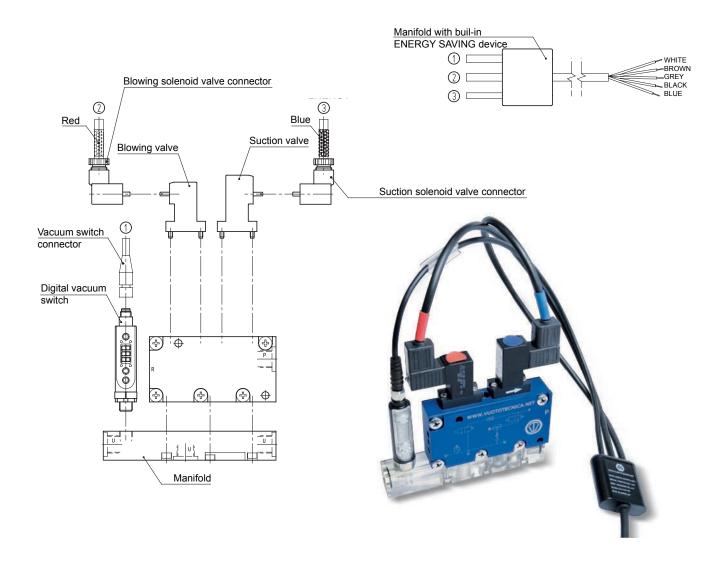




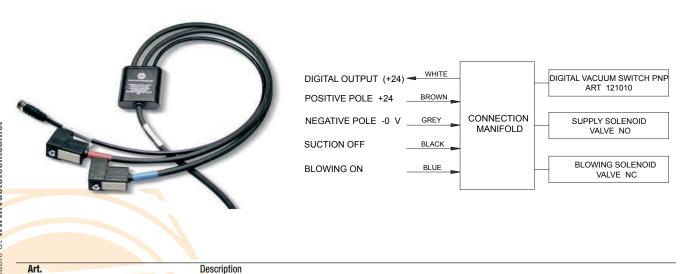

| Generator | Supply press. | Air consumption |      | Air capacity (NI/s) at different vacuum levels (-KPa)  Max. vacuum level |      |      |      |      |      |      |      |      |  |
|-----------|---------------|-----------------|------|--------------------------------------------------------------------------|------|------|------|------|------|------|------|------|--|
| art.      | bar (g)       | NI/s            | 0    | 10                                                                       | 20   | 30   | 40   | 50   | 60   | 70   | 80   | -KPa |  |
| MI 10     | 5.0           | 1.7             | 2.52 | 2.00                                                                     | 1.66 | 0.97 | 0.56 | 0.40 | 0.22 | 0.16 | 0.07 | 85   |  |
| MI 14     | 5.0           | 2.1             | 3.35 | 2.42                                                                     | 1.84 | 0.99 | 0.80 | 0.58 | 0.34 | 0.22 | 0.10 | 85   |  |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)






| Generator | Supply press. | Air consumption |    | Evacu | ation time | (ms/l = s/ | /m³) at diff | ferent vacu | ium levels | (-KPa) |      | Max. vacuum level |
|-----------|---------------|-----------------|----|-------|------------|------------|--------------|-------------|------------|--------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10 | 20    | 30         | 40         | 50           | 60          | 70         | 80     | 85   | -KPa              |
| MI 10     | 5.0           | 1.7             | 42 | 97    | 195        | 384        | 651          | 951         | 1589       | 2828   | 4016 | 85                |
| MI 14     | 5.0           | 2.1             | 31 | 72    | 146        | 288        | 489          | 714         | 1193       | 2124   | 3016 | 85                |


### ACCESSORIES AND SPARE PARTS UPON REQUEST

| ACCESSORIES AND SPARE PARTS UPON REQUEST                          |      |              |             |   |
|-------------------------------------------------------------------|------|--------------|-------------|---|
| Art.                                                              |      | MI 10        | MI 14       |   |
| Sealing kit and reed valve                                        | art. | 00 KIT MI 10 | 00 KIT MI 1 | 4 |
| Electric connection cable with axial connector for vacuum switch  | art. |              | 00 12 20    |   |
| Electric connection cable with radial connector for vacuum switch | art. |              | 00 12 21    |   |
| Electric connection cable set with built-in energy                |      |              |             |   |
| Saving device NO and connectors                                   | art. |              | 00 15 202   |   |
| Electric connection cable set with built-in energy                |      |              |             |   |
| Saving device NC and connectors                                   | art. |              | 00 15 203   |   |
| Digital vacuum switch                                             | art. |              | 12 10 10    |   |
| Supply solenoid valve NO                                          | art. |              | 00 15 176   |   |
| Supply solenoid valve NC                                          | art. |              | 00 15 175   |   |

# ACCESSORIES AND SPARE PARTS FOR VACUUM GENERATORS AND MODULES SERIES GVMM and MI

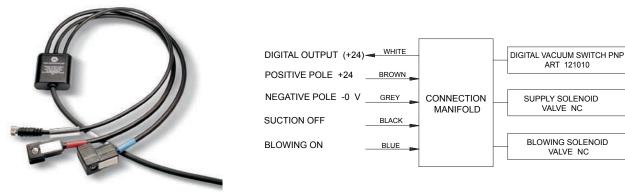


### Cable set with built-in energy saving device



3D drawings available at www.vuototecnica.net

- Digital vacuum switch


- Supply solenoid valve NO

- Ejection solenoid valve NC Cable length = 5 mt.

00 15 202

# ACCESSORIES AND SPARE PARTS FOR VACUUM GENERATORS AND MODULES SERIE GVMM e MI

### Cable set with built-in energy saving device



| Art.      | Description                                                      |
|-----------|------------------------------------------------------------------|
| 00 15 203 | Cable set with built-in energy saving device for connection to : |
|           | - Digital vacuum switch                                          |
|           | - Supply solenoid valve NC                                       |
|           | - Ejection solenoid valve NC                                     |
|           | Cable length= 5 mt.                                              |

### Connector



| Art.      | Description                                 |
|-----------|---------------------------------------------|
| 00 15 157 | Connector with LED for micro solenoid valve |

### Cable with axial connector



| Art.     | Description                                     |
|----------|-------------------------------------------------|
| 00 12 20 | Electric connection cable with axial connector, |
|          | for digital vacuum switch                       |

### Cable with radial connector



| Art.     | Description                                      |
|----------|--------------------------------------------------|
| 00 12 21 | Electric connection cable with radial connector, |
|          | for digital vacuum switch                        |

### Digital vacuum switch

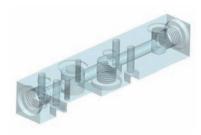


| Art.     | Description                         |  |  |  |
|----------|-------------------------------------|--|--|--|
| 12 10 10 | Digital vacu <mark>um</mark> switch |  |  |  |

# ACCESSORIES AND SPARE PARTS FOR VACUUM GENERATORS AND MODULES SERIES GVMM e MI

### Micro solenoid valve NO




| Art.      | Description              |  |
|-----------|--------------------------|--|
| 00 15 176 | Supply solenoid valve NO |  |

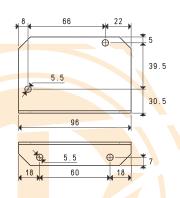
### Micro solenoid valve NC

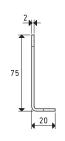


| Art.      | Description              |  |
|-----------|--------------------------|--|
| 00 15 175 | Supply solenoid valve NC |  |

### Plexiglass manifolds




| Art.      | Description                             |  |
|-----------|-----------------------------------------|--|
| 00 15 171 | Plexiglass manifold for GVMM - MI 3/7   |  |
| 00 15 188 | Plexiglass manifold for GVMM - MI 10/14 |  |


### **Aluminium manifolds**

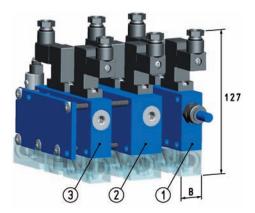


| Art.      | Description                            |  |
|-----------|----------------------------------------|--|
| 00 15 174 | Aluminium manifold for GVMM - MI 3/7   |  |
| 00 15 187 | Aluminium manifold for GVMM - MI 10/14 |  |

### Support








| Art.      | Description                                  |
|-----------|----------------------------------------------|
| 00 15 306 | Galvanised sheet metal L-type fixing support |

8

GVMM multi-function vacuum generators can be assembled with one or more intermediate modules, thus forming a modular vacuum system, featuring a compact shape and reduced size and weight.

As a standard, up to 6 vacuum units can be assembled, but using threaded bars instead allows assembling even more.



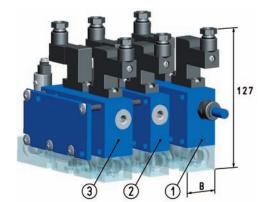
### **SET-UP EXAMPLE 1**

| N° | Art.       | В  |
|----|------------|----|
| 1  | GVMM 3 - 7 | 20 |
| 2  | MI 10 - 14 | 25 |
| 3  | MI 3 - 7   | 20 |

Total length L= 65

Recommended screw kit: Art. 00 KIT GVMM 02

Order example:


n°1 Generator GVMM 3

n°1 Intermediate module MI 10

n°1 Intermediate module MI 3

n°1 stainless steel screw kit 00 KIT GVMM 02





### SET-UP EXAMPLE 2

| N° | Art.         | В  |
|----|--------------|----|
| 1  | GVMM 10 - 14 | 25 |
| 2  | MI 3 - 7     | 20 |
| 3  | MI 10 - 14   | 25 |

Total length L= 70

Recommended screw kit: Art. 00 KIT GVMM 03

Order example:

n°1 Generator GVMM 10

n°1 Intermediate module MI 3

n°1 Intermediate module MI 10

n°1 stainless steel screw kit 00 KIT GVMM 03



| STAINI | <b>FSS</b> | STEEL | M5 | SCRFW | KIT |
|--------|------------|-------|----|-------|-----|

| Art.           | L         |
|----------------|-----------|
| 00 KIT GVMM 01 | 45 - 50   |
| 00 KIT GVMM 02 | 60 - 65   |
| 00 KIT GVMM 03 | 70 - 75   |
| 00 KIT GVMM 04 | 80 - 85   |
| 00 KIT GVMM 05 | 90 - 95   |
| 00 KIT GVMM 06 | 100 - 105 |
| 00 KIT GVMM 07 | 110 - 115 |
| 00 KIT GVMM 08 | 120 - 125 |
| 00 KIT GVMM 09 | 130 - 135 |
| 00 KIT GVMM 10 | 140 - 145 |
| 00 KIT GVMM 11 | 150 - 155 |

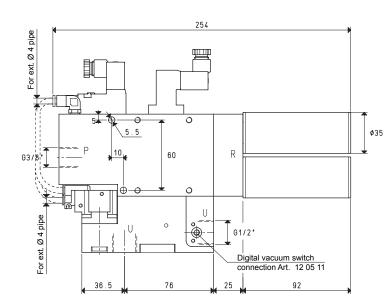


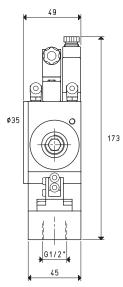
These generators are independent vacuum units that can control an entire vacuum gripping system. They have been specially designed for the AUTOMOTIVE sector and they are equipped with single ejectors that, given the same capacity as the multi-ejector generators, allow a quicker grip and, as a result, a greater compressed air consumption. As a standard, they are provided with a built-in pneumatic energy-saving device. They are composed of an anodised aluminium monobloc structure, inside of which are installed the ejectors, the servo-controlled slide valve for the compressed air supply and are contained the vacuum chambers as well as the various connections. On the outside, on the other hand, are installed:

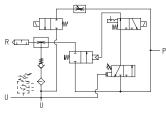
- A bistable impulse solenoid valve for controlling the slide valve.
- A micro solenoid valve for blowing the exhaust compressed air.
- A flow regulator for dosing the exhaust compressed air.
- Two silencers for removing noise from the ejected air.
- An aluminium manifold provided with vacuum connections with built-in:
- A pneumatic vacuum switch for managing the compressed air supply according to the set vacuum level (energy saving).
- A check valve for maintaining the vacuum in case of electricity or compressed air failure.

° A suction filtre, easy to inspect through the transparent polycarbonate lid. By providing an electric impulse to the two-position micro solenoid valve, the compressed air supply slide valve will be activated and vacuum will be created at the application. Once the preset maximum value has been reached, the pneumatic vacuum switch, acts on the slide valve and interrupts the compressed air supply, restoring it when the value returns below the minimum value.

Along with maintaining the vacuum level within the preset safety values, this modulation allows saving a considerable amount of compressed air, even in case of electricity failure. Once the work cycle is completed, an electric impulse deactivates the supply micro solenoid valve and, at the same time, the ejection micro solenoid valve for a quick restoration of the atmospheric pressure at the application.


AVG vacuum generators are set for the installation of a micro digital vacuum switch art. 12 05 11 at the application and, upon request, they can be supplied protection devices against shocks and accidental falls.


Also these vacuum generators can be installed in any position.

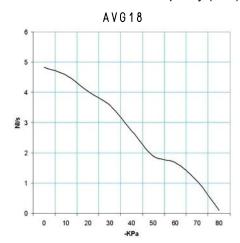

AVG vacuum generators are suited for controlling vacuum cup gripping systems, for handling sheet metal, glass, marble, ceramic, plastic, cardboard, wood, etc., and, in particular for the AUTOMOTIVE sector, which requires equipment with excellent performance and reduced overall dimensions and weight.

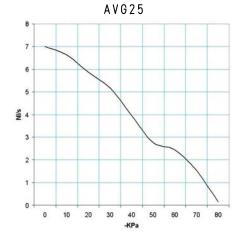






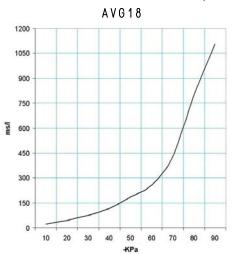


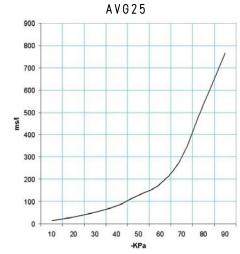




| P=COMPRESSED AIR CONNECT                | ION R=EXHA | UST  | U=VACUUM CON | NECTION   | Ú    |      |           |
|-----------------------------------------|------------|------|--------------|-----------|------|------|-----------|
| Art.                                    |            |      |              | AVG 18    |      |      | AVG 25    |
| Max. quantity of sucked air             | cum/h      | 16.5 | 17.0         | 17.4      | 24.5 | 25.0 | 25.2      |
| Max. vacuum level                       | -KPa       | 60   | 70           | 85        | 60   | 70   | 85        |
| Final pressure                          | mbar abs.  | 400  | 300          | 150       | 400  | 300  | 150       |
| Supply pressure                         | bar (g)    | 4    | 5            | 6         | 4    | 5    | 6         |
| Air consumption                         | NI/s       | 4.3  | 5.3          | 6.4       | 6.5  | 8.0  | 9.6       |
| Max. quantity of air blown at 6 bar (g) | I/min      |      |              | 140       |      |      | 140       |
| Bistable supply solenoid valve          | NO/NC      |      |              | NO/NC     |      |      | NO/NC     |
| Electric absorption                     | W          |      |              | 1         |      |      | 1         |
| <b>Ejection solenoid valve position</b> | NC         |      |              | NC        |      |      | NC        |
| Electric absorption                     | W          |      |              | 4         |      |      | 4         |
| Supply voltage                          | V          |      |              | 24 DC     |      |      | 24 DC     |
| Class of protection                     | IP         |      |              | 65        |      |      | 65        |
| Working temperature                     | °C         |      |              | -10 / +60 |      |      | -10 / +60 |
| Noise level                             | dB(A)      |      |              | 63        |      |      | 65        |
| Weight                                  | Kg         |      |              | 1.67      |      |      | 1.67      |

Note: To order the generator provided with digital vacuum switch, add the letter V to the code (e.g.: AVG 25 V).

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.


### Air capacity (NI/s) at different vacuum levels (-Kpa)





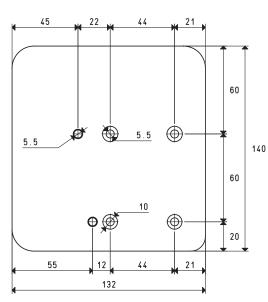

| Generator | Supply press. | Air consumption |      |      | Air capacit | y (NI/s) at | different | acuum le | vels (-KPa) |      |      | Max. vacuum level |
|-----------|---------------|-----------------|------|------|-------------|-------------|-----------|----------|-------------|------|------|-------------------|
| art.      | bar (g)       | NI/s            | 0    | 10   | 20          | 30          | 40        | 50       | 60          | 70   | 80   | -KPa              |
| AVG 18    | 6.0           | 6.4             | 4.83 | 4.58 | 4.04        | 3.58        | 2.72      | 1.90     | 1.68        | 1.07 | 0.10 | 85                |
| AVG 25    | 6.0           | 9.6             | 7.00 | 6.63 | 5.86        | 5.18        | 3.94      | 2.76     | 2.44        | 1.54 | 0.15 | 85                |

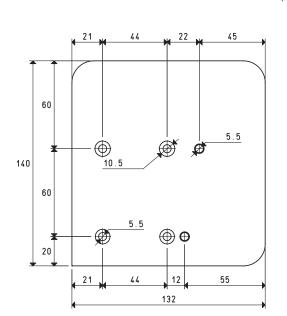
### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)





| Generator | Supply press. | Air consumption |    | Evacu | ation time | (ms/l = s/l) | /m³) at diff | erent vacu | um levels | (-KPa) |      | Max. vacuum level |
|-----------|---------------|-----------------|----|-------|------------|--------------|--------------|------------|-----------|--------|------|-------------------|
| art.      | bar (g)       | NI/s            | 10 | 20    | 30         | 40           | 50           | 60         | 70        | 80     | 85   | -KPa              |
| AVG 18    | 6.0           | 6.4             | 22 | 44    | 75         | 115          | 185          | 258        | 430       | 798    | 1107 | 85                |
| AVG 25    | 6.0           | 9.6             | 15 | 30    | 52         | 80           | 128          | 178        | 297       | 538    | 764  | 85                |


### **ACCESSORIES AND SPARE PARTS UPON REQUEST**

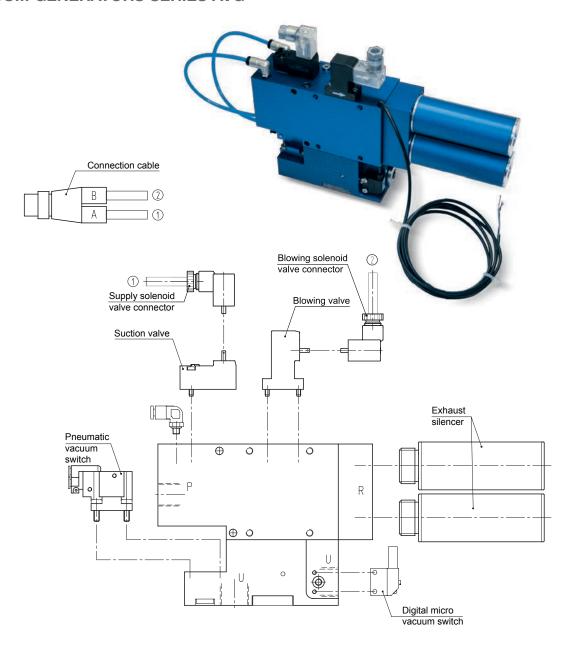

| Art.                                                                                   |      | AVG 18        | AVG 25        |  |
|----------------------------------------------------------------------------------------|------|---------------|---------------|--|
| Sealing kit                                                                            | art. | 00 KIT AVG 18 | 00 KIT AVG 25 |  |
| Cables with solenoid valve connectors provided with                                    |      |               |               |  |
| built-in electronic device in the male M2 connector                                    | art. | 00 15 309     |               |  |
| Exhaust silencer                                                                       | art. | SSX 3         | 3/4 R         |  |
| Rear alu <mark>minium</mark> shockproo <mark>f protecti</mark> on plate                | art. | 00 15         | 271           |  |
| ront al <mark>uminium</mark> shockproo <mark>f protectio</mark> n pl <mark>at</mark> e | art. | 00 15         | 272           |  |
| Digital m <mark>icro va</mark> cuum switch                                             | art. | 12 0          | 5 11          |  |
| Bistable <mark>supply</mark> solenoid valve                                            | art. | 00 15         | 297           |  |
| Blowing <mark>solenoi</mark> d valve NC                                                | art. | 00 15         | 175           |  |



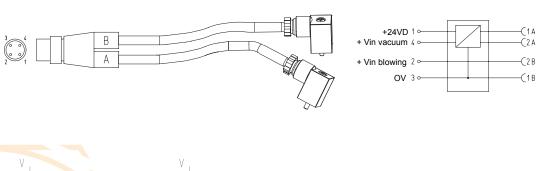
### Protection devices

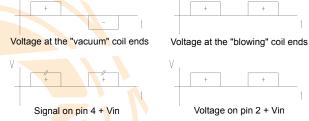







| Art.      | Description                |
|-----------|----------------------------|
| 00 15 271 | Rear shockproof protection |


| Art.      | Descr                        | iption         | Π |
|-----------|------------------------------|----------------|---|
| 00 15 272 | Fr <mark>ont s</mark> hockpr | oof protection |   |


Note: To order the generator provided with digital vacuum switch, add the letter V to the code (e.g.: AVG 25 P V).

# ACCESSORIES AND SPARE PARTS FOR SINGLE-STAGE AND MULTI-FUNCTION VACUUM GENERATORS SERIES AVG



### Cable with built-in electronic device





| N°        | Description                            |  |
|-----------|----------------------------------------|--|
| 00 15 309 | Cable with solenoid valve connectors   |  |
|           | with built-in electronic device in the |  |
|           | male M12 connector.                    |  |

# ACCESSORIES AND SPARE PARTS FOR SINGLE-STAGE AND MULTI-FUNCTION VACUUM GENERATORS SERIES AVG

### Digital micro vacuum switch



### Connector



| Art.      | Description                       |  |
|-----------|-----------------------------------|--|
| 00 15 157 | Connector with solenoid valve LED |  |

Description

Digital micro vacuum switch

### Bistable micro solenoid valve



| Art.      | Description                    |  |
|-----------|--------------------------------|--|
| 00 15 297 | Bistable supply solenoid valve |  |

### Micro solenoid valve NC



| Art.      | Description               |
|-----------|---------------------------|
| 00 15 175 | Blowing solenoid valve NC |

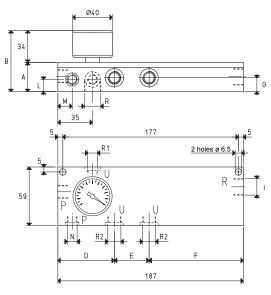
### Silencer

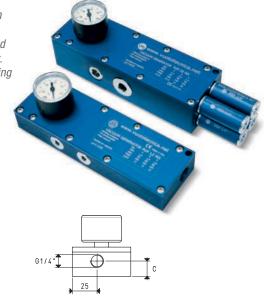


| Art.       | Description      |  |  |  |
|------------|------------------|--|--|--|
| SSX 3/4" R | Exhaust silencer |  |  |  |
|            |                  |  |  |  |

### MULTI-STAGE VACUUM GENERATORS PVP 12 MX and 25 MX

This new range of multiple ejector vacuum generators represents the natural evolution of the PVP 12M and 25M generators. In fact, given the same air consumption and final vacuum level, the maximum suction capacity is increased from 15 to 21 cum/h and from 25 to 31 cum/h respectively.


The body and the lid are made with anodised aluminium, all the ejectors are made with stainless steel, as well as the fixing screws.


The state of the art seal in EPDM and is never in contact with the sucked fluid. The reed valves, on the other hand, are made with silicon as a standard, and viton, upon request. The devices are also equipped with two new vacuum connections, apart from the existing one, and one for the possible connection to control or measuring devices.

As a standard, the devices are equipped with a vacuum gauge, a quick coupler for compressed air supply and metal locking caps for the unused connections.

The exhaust air connections are threaded in order to allow the installation of the new SSX silencers, for a further noise reduction.

They are perfectly interchangeable with the previous generators.

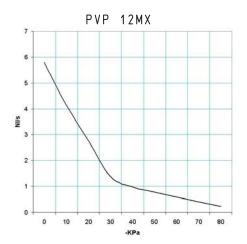


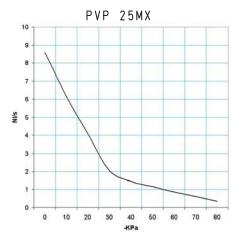




| Art.                        |           | PVP 12 MX           |
|-----------------------------|-----------|---------------------|
| P=COMPRESSED AIR CONNECTION | R=EXHAUST | U=VACUUM CONNECTION |
|                             |           |                     |

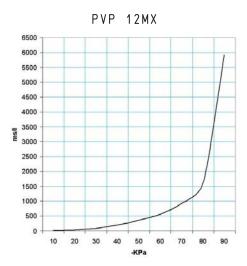
| Art.                             |           |      |      | PVP 12 MX        |      |      | PVP 25 MX       |
|----------------------------------|-----------|------|------|------------------|------|------|-----------------|
| Max. quantity of sucked air      | cum/h     | 16.0 | 18.0 | 21.0             | 25.0 | 28.0 | 31.0            |
| Max. vacuum level                | -KPa      | 65   | 85   | 90               | 65   | 85   | 90              |
| Final pressure                   | mbar abs. | 350  | 150  | 100              | 350  | 150  | 100             |
| Supply pressure                  | bar (g)   | 4    | 5    | 6                | 4    | 5    | 6               |
| Air consumption                  | NI/s      | 1.3  | 1.5  | 1.8              | 2.3  | 2.7  | 3.2             |
| Working temperature              | °C        |      |      | -20 / +80        |      |      | -20 / +80       |
| Noise level                      | dB(A)     |      |      | 65               |      |      | 70              |
| Weight                           | g         |      |      | 660              |      |      | 960             |
| A                                |           |      |      | 29.5             |      |      | 45.5            |
| В                                |           |      |      | 63.5             |      |      | 79.5            |
| C                                |           |      |      | 15.5             |      |      | 20.7            |
| D                                |           |      |      | 57.0             |      |      | 60.5            |
| E                                |           |      |      | 35.0             |      |      | 37.0            |
| F                                |           |      |      | 95.0             |      |      | 89.5            |
| G                                |           |      |      | 14.0             |      |      | 20.7            |
| L                                |           |      |      |                  |      |      | 20.75           |
| M                                |           |      |      |                  |      |      | 14.5            |
| N                                |           |      |      |                  |      |      | G1/8"           |
| Exhaust connection               | Ø         |      |      | G3/8"            |      |      | N° 4 x G1/4"    |
| R Vacuum connection              | Ø         |      |      | G3/8"            |      |      | G3/8"           |
| R 1 Auxiliary vacuum connection  | Ø         |      |      | G1/8"            |      |      | G1/8"           |
| R 2 Additional vacuum connection | Ø         |      |      | G1/4"            |      |      | G1/2"           |
| Spare parts                      |           |      |      |                  |      |      |                 |
| Sealing kit and reed valve       | art.      |      |      | 00 KIT PVP 12 MX |      |      | 00 KIT PVP 25 M |
| Vacuum gauge                     | art.      |      |      | 09 03 15         |      |      | 09 03 15        |

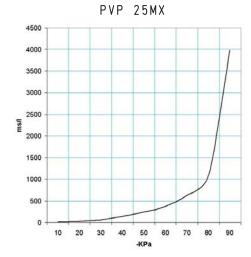

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.


8.66

### 8

# 3D drawing available at www.vuototecnica.net

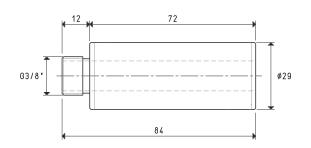

### Air capacity (NI/s) at different vacuum levels (-Kpa)



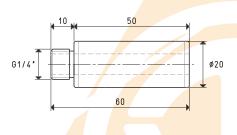



| Generator | Supply press. | Air consumption |      | Air capacity (NI/s) at different vacuum levels (-KPa) Max. vacuum level |      |      |      |      |      |      |      |      |  |
|-----------|---------------|-----------------|------|-------------------------------------------------------------------------|------|------|------|------|------|------|------|------|--|
| art.      | bar (g)       | NI/s            | 0    | 10                                                                      | 20   | 30   | 40   | 50   | 60   | 70   | 80   | -KPa |  |
| PVP 12 MX | 6.0           | 1.8             | 5.80 | 4.14                                                                    | 2.76 | 1.38 | 0.98 | 0.78 | 0.59 | 0.41 | 0.23 | 90   |  |
| PVP 25 MX | 6.0           | 3.2             | 8.61 | 6.15                                                                    | 4.10 | 2.05 | 1.46 | 1.17 | 0.88 | 0.61 | 0.35 | 90   |  |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)





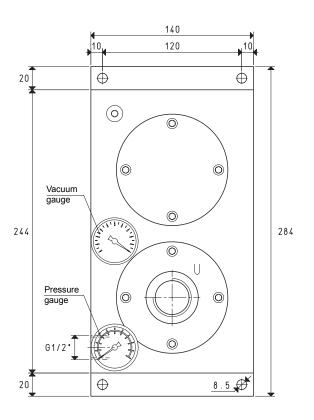


| Generator | Supply press. | Air consumption |      | Evacuation time (ms/I = $s/m^3$ ) at different vacuum levels (-KPa) |      |       |       |       |       |        |      |      |
|-----------|---------------|-----------------|------|---------------------------------------------------------------------|------|-------|-------|-------|-------|--------|------|------|
| art.      | bar (g)       | NI/s            | 10   | 20                                                                  | 30   | 40    | 50    | 60    | 70    | 80     | 85   | -KPa |
| PVP 12 MX | 6.0           | 1.8             | 15.4 | 38.7                                                                | 85.1 | 204.4 | 365.9 | 559.8 | 929.4 | 1607.8 | 5916 | 90   |
| PVP 25 MX | 6.0           | 3.2             | 10.4 | 26.0                                                                | 57.3 | 137.7 | 246.5 | 377.1 | 626.0 | 1083.1 | 3986 | 90   |

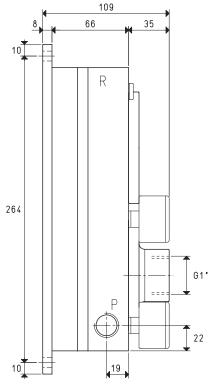
### Accessories upon request

Silencer art. SSX 3/8" for PVP 12MX



### 4 silencers art. SSX 1/4 for PVP 25 MX





This new range of multi-stage vacuum generators have been designed to be assembled onto OCTOPUS vacuum systems and represents a true evolution of traditional vane vacuum pumps. They feature state of the art ejectors and boast an excellent ratio between the consumed and the sucked air to the benefit of operative consumption. They also allow adjusting the vacuum level and capacity according to the air supply pressure.

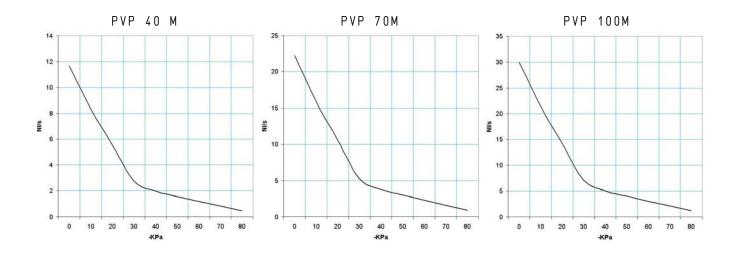
When designing these vacuum generators, our focus was on noise; In fact, they are free of moving parts subject to vibrations and wear and they are perfectly soundproofed, therefore, their operation is particularly silent.

Moreover, their operation being based on Venturi's principle, they do not develop heat. The light alloys used to make them have allowed a considerable reduction of their weight. A good filtration of the compressed air supply and of the sucked one allows discharging air free from oil vapours, water condensation and impurities and reducing maintenance to a simple regular filtre cleaning.



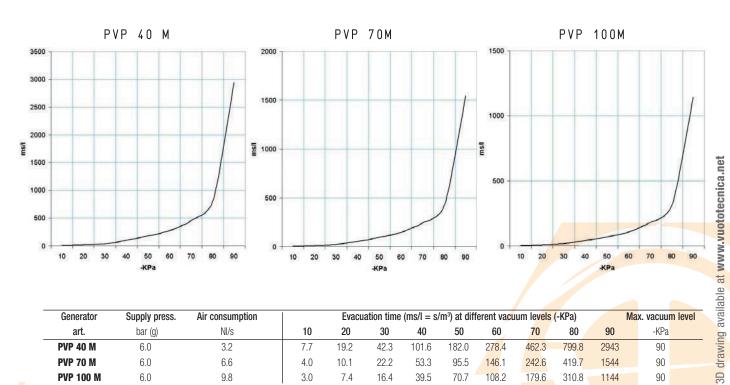







| P=COMPRESSED AIR C          | ONNECTION | R=EXHA | AUST | U=VACUL         | U=VACUUM CONNECTION |     |                |           |     |                 |
|-----------------------------|-----------|--------|------|-----------------|---------------------|-----|----------------|-----------|-----|-----------------|
| Art.                        |           |        |      | PVP 40 M        |                     |     | PVP 70 M       |           |     | PVP 100 M       |
| Max. quantity of sucked air | cum/h     | 36     | 39   | 42              | 65                  | 73  | 80             | 88        | 98  | 108             |
| Max. vacuum level           | -KPa      | 65     | 82   | 90              | 65                  | 82  | 90             | 65        | 82  | 90              |
| Final pressure              | mbar abs. | 350    | 180  | 100             | 350                 | 180 | 100            | 350       | 180 | 100             |
| Supply pressure             | bar (g)   | 4      | 5    | 6               | 4                   | 5   | 6              | 4         | 5   | 6               |
| Air consumption             | NI/s      | 2.3    | 2.7  | 3.2             | 4.9                 | 5.7 | 6.6            | 7.2       | 8.5 | 9.8             |
| Working temperature         | °C        |        |      | -20 / +80       | -20 / +80           |     |                | -20 / +80 |     |                 |
| Noise level                 | dB(A)     |        |      | 67              | 67                  |     | 68             |           |     | 70              |
| Weight                      | Kg        |        |      | 4.2             |                     |     | 4.2            |           |     | 4.2             |
| Spare parts                 |           |        |      |                 |                     |     |                |           |     |                 |
| Sealing kit e disc valves   | art.      |        |      | 00 KIT PVP 40 N |                     | 00  | O KIT PVP 70 N | M         | 0   | 0 KIT PVP 100 M |
| Vacuum <mark>gauge</mark>   | art.      |        |      | 09 03 15        |                     |     | 09 03 15       |           |     | 09 03 15        |
| Pressure gauge              | art.      |        |      | 09 03 25        |                     |     | 09 03 25       |           |     | 09 03 25        |

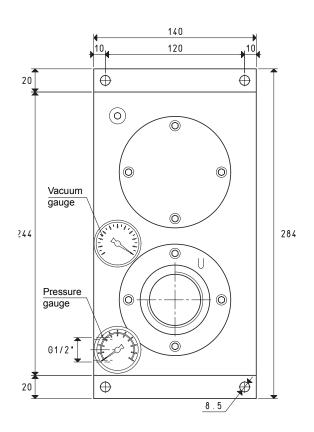
Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

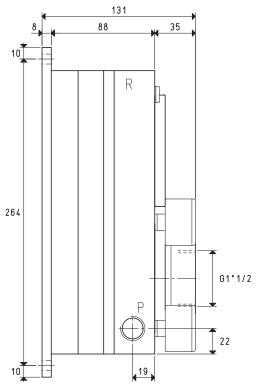

By adding the letter R to the article, the generator will be supplied with a built-in check valve (E.g.: PVP 40 MR).

### Air capacity (NI/s) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption | 1     | Air capacity (NI/s) at different vacuum levels (-KPa) Max. vacuu |       |      |      |      |      |      |      |      |  |
|-----------|---------------|-----------------|-------|------------------------------------------------------------------|-------|------|------|------|------|------|------|------|--|
| art.      | bar (g)       | NI/s            | 0     | 10                                                               | 20    | 30   | 40   | 50   | 60   | 70   | 80   | -KPa |  |
| PVP 40 M  | 6.0           | 3.2             | 11.66 | 8.32                                                             | 5.55  | 2.77 | 1.98 | 1.58 | 1.19 | 0.83 | 0.47 | 90   |  |
| PVP 70 M  | 6.0           | 6.6             | 22.22 | 15.87                                                            | 10.58 | 5.29 | 3.77 | 3.02 | 2.27 | 1.58 | 0.90 | 90   |  |
| PVP 100 M | 6.0           | 9.8             | 30.00 | 21.42                                                            | 14.28 | 7.14 | 5.10 | 4.08 | 3.06 | 2.14 | 1.22 | 90   |  |


### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



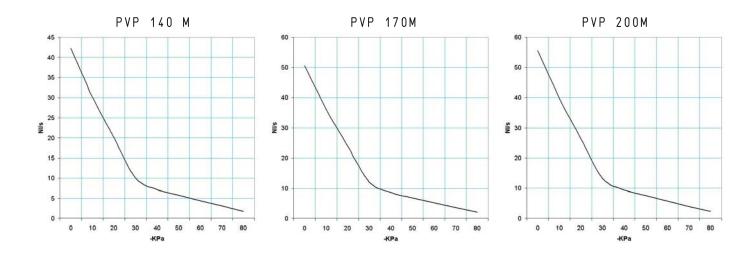

| Generator | Supply press. | Air consumption |     | Evacu | Ma   | Max. vacuum level |       |       |       |       |      |      |  |
|-----------|---------------|-----------------|-----|-------|------|-------------------|-------|-------|-------|-------|------|------|--|
| art.      | bar (g)       | NI/s            | 10  | 20    | 30   | 40                | 50    | 60    | 70    | 80    | 90   | -KPa |  |
| PVP 40 M  | 6.0           | 3.2             | 7.7 | 19.2  | 42.3 | 101.6             | 182.0 | 278.4 | 462.3 | 799.8 | 2943 | 90   |  |
| PVP 70 M  | 6.0           | 6.6             | 4.0 | 10.1  | 22.2 | 53.3              | 95.5  | 146.1 | 242.6 | 419.7 | 1544 | 90   |  |
| PVP 100 M | 6.0           | 9.8             | 3.0 | 7.4   | 16.4 | 39.5              | 70.7  | 108.2 | 179.6 | 310.8 | 1144 | 90   |  |

### MULTI-STAGE VACUUM GENERATORS PVP 140 M, 170 M and 200 M



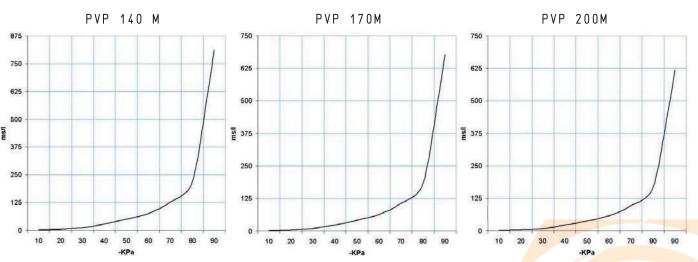







| P=COMPRESSED AIR C          | ONNECTION | R=EXHA | AUST | U=VACUL          | IM CONNEC | CTION |             |      |           |               |
|-----------------------------|-----------|--------|------|------------------|-----------|-------|-------------|------|-----------|---------------|
| Art.                        |           |        |      | PVP 140 M        |           |       | PVP 170 M   |      | PVP 200 M |               |
| Max. quantity of sucked air | cum/h     | 125    | 140  | 152              | 150       | 168   | 182         | 170  | 188       | 200           |
| Max. vacuum level           | -KPa      | 65     | 82   | 90               | 65        | 82    | 90          | 65   | 82        | 90            |
| Final pressure              | mbar abs. | 350    | 180  | 100              | 350       | 180   | 100         | 350  | 180       | 100           |
| Supply pressure             | bar (g)   | 4      | 5    | 6                | 4         | 5     | 6           | 4    | 5         | 6             |
| Air consumption             | NI/s      | 9.6    | 11.4 | 13.0             | 12.1      | 14.2  | 16.3        | 14.2 | 16.9      | 19.4          |
| Working temperature         | °C        |        |      | -20 / +80        |           |       | -20 / +80   |      |           | -20 / +80     |
| Noise level                 | dB(A)     |        |      | 70               | 70        |       | 71          |      |           | 72            |
| Weight                      | Kg        |        |      | 5.1              |           |       | 5.1         |      |           | 5.1           |
| Spare parts                 |           |        |      |                  |           |       |             |      |           |               |
| Sealing kit e disc valves   | art.      |        |      | 00 KIT PVP 140 N | Λ         | 00    | KIT PVP 170 | M    | 00        | KIT PVP 200 M |
| Vacuum gauge                | art.      |        |      | 09 03 15         |           |       | 09 03 15    |      |           | 09 03 15      |
| Pressure gauge              | art.      |        |      | 09 03 25         |           |       | 09 03 25    |      |           | 09 03 25      |

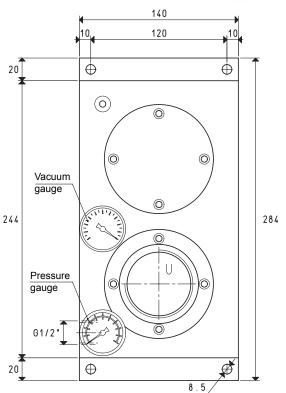
Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

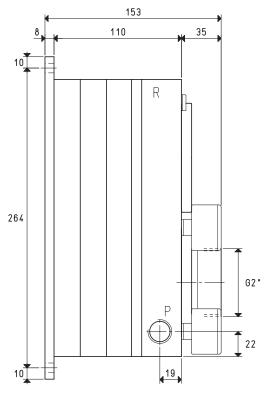

By adding the letter R to the article, the generator will be supplied with a built-in check valve (E.g.: PVP 140 MR).

### Air capacity (NI/s) at different vacuum levels (-Kpa)



| Generator | Supply press. | Air consumption |       |       | Air capaci | ty (NI/s) at | different | vacuum le | vels (-KPa) |      |      | Max. vacuum level |
|-----------|---------------|-----------------|-------|-------|------------|--------------|-----------|-----------|-------------|------|------|-------------------|
| art.      | bar (g)       | NI/s            | 0     | 10    | 20         | 30           | 40        | 50        | 60          | 70   | 80   | -KPa              |
| PVP 140 M | 6.0           | 13.0            | 42.22 | 30.15 | 20.10      | 10.05        | 7.18      | 5.74      | 4.31        | 3.02 | 1.72 | 90                |
| PVP 170 M | 6.0           | 16.3            | 50.55 | 36.10 | 24.07      | 12.03        | 8.59      | 6.87      | 5.17        | 3.61 | 2.06 | 90                |
| PVP 200 M | 6.0           | 19.4            | 55.55 | 39.67 | 26.45      | 13.22        | 9.44      | 7.55      | 5.68        | 3.97 | 2.27 | 90                |


### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)



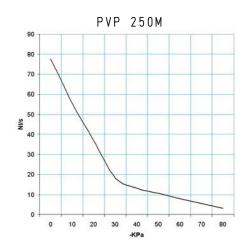

| Generator        | Supply press. | Air consumption |     | Evacu | ation time | (ms/l = s/l) | m³) at diff | erent vacu | um levels | (-KPa) | Ma  | x. vacuu <mark>m level</mark> |
|------------------|---------------|-----------------|-----|-------|------------|--------------|-------------|------------|-----------|--------|-----|-------------------------------|
| art.             | bar (g)       | NI/s            | 10  | 20    | 30         | 40           | 50          | 60         | 70        | 80     | 90  | -KPa                          |
| PVP 140 M        | 6.0           | 13.0            | 2.1 | 5.3   | 11.7       | 28.0         | 50.2        | 76.9       | 127.6     | 220.8  | 812 | 90                            |
| <b>PVP 170 M</b> | 6.0           | 16.3            | 1.7 | 4.4   | 9.7        | 23.4         | 42.0        | 64.2       | 106.6     | 184.5  | 678 | 90                            |
| PVP 200 M        | 6.0           | 19.4            | 1.6 | 4.0   | 8.9        | 21.3         | 38.2        | 58.4       | 97.0      | 167.8  | 618 | 90                            |

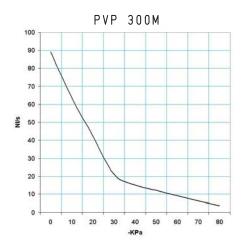
### MULTI-STAGE VACUUM GENERATORS PVP 250 M and 300 M





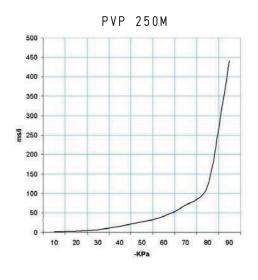


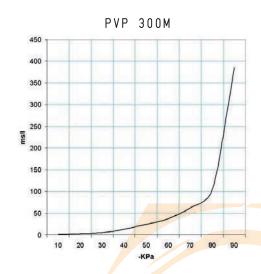




| P=COMPRESSED AIR CONN       | IECTION R=EXHA | UST  | U=VACUUM CONN | IECTION          |      |      | U                |
|-----------------------------|----------------|------|---------------|------------------|------|------|------------------|
| Art.                        |                |      |               | PVP 250 M        |      |      | PVP 300 M        |
| Max. quantity of sucked air | cum/h          | 224  | 252           | 280              | 240  | 290  | 320              |
| Max. vacuum level           | -KPa           | 65   | 82            | 90               | 65   | 82   | 90               |
| Final pressure              | mbar abs.      | 350  | 180           | 100              | 350  | 180  | 100              |
| Supply pressure             | bar (g)        | 4    | 5             | 6                | 4    | 5    | 6                |
| Air consumption             | NI/s           | 17.3 | 20.7          | 24.0             | 20.4 | 24.8 | 29.0             |
| Working temperature         | °C             |      |               | -20 / +80        |      |      | -20 / +80        |
| Noise level                 | dB(A)          |      |               | 72               |      |      | 74               |
| Weight                      | Kg             |      |               | 6.0              |      |      | 6.0              |
| Spare parts                 |                |      |               |                  |      |      |                  |
| Sealing kit e disc valves   | art.           |      |               | 00 KIT PVP 250 M |      |      | 00 KIT PVP 300 M |
| Vacuum gauge                | art.           |      |               | 09 03 15         |      |      | 09 03 15         |
| Pressure gauge              | art.           |      |               | 09 03 25         |      |      | 09 03 25         |

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

By adding the letter R to the article, the generator will be supplied with a built-in check valve (E.g.: PVP 250 MR).


# Air capacity (NI/s) at different vacuum levels (-Kpa)






| Generator | Supply press. | Air consumption |       |       | Air capaci | ty (NI/s) at | different | vacuum le | vels (-KPa) |      |      | Max. vacuum level |
|-----------|---------------|-----------------|-------|-------|------------|--------------|-----------|-----------|-------------|------|------|-------------------|
| art.      | bar (g)       | NI/s            | 0     | 10    | 20         | 30           | 40        | 50        | 60          | 70   | 80   | -KPa              |
| PVP 250 M | 6.0           | 24.0            | 77.77 | 55.55 | 37.03      | 18.51        | 13.22     | 10.58     | 7.95        | 5.56 | 3.17 | 90                |
| PVP 300 M | 6.0           | 29.0            | 88.88 | 63.48 | 42.32      | 21.16        | 15.11     | 12.09     | 9.09        | 6.35 | 3.63 | 90                |

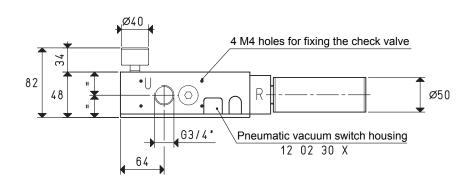
### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)

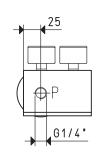


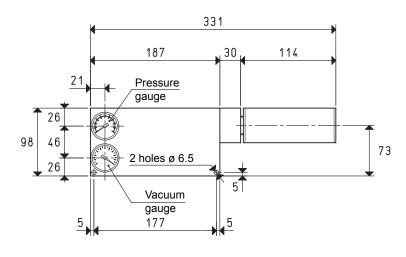


| Generator | Supply press. | Air consumption |     | Evacu | ation time | (ms/l = s/l) | /m³) at diff | erent vacu | um levels | (-KPa) | Ma  | x. vacuu <mark>m level</mark> |
|-----------|---------------|-----------------|-----|-------|------------|--------------|--------------|------------|-----------|--------|-----|-------------------------------|
| art.      | bar (g)       | NI/s            | 10  | 20    | 30         | 40           | 50           | 60         | 70        | 80     | 90  | -KPa                          |
| PVP 250 M | 6.0           | 24.0            | 1.1 | 2.9   | 6.4        | 15.2         | 27.3         | 41.8       | 69.3      | 119.9  | 442 | 90                            |
| PVP 300 M | 6.0           | 29.0            | 1.0 | 2.5   | 5.5        | 13.3         | 23.8         | 36.5       | 60.6      | 104.9  | 386 | 90                            |

This new range of generators represent the natural evolution of the PVP  $25 \div 75$  MD multiple ejector vacuum generators and they boast an excellent performance. In fact, given the same air consumption values and the same final vacuum level, the maximum suction capacity is increased by  $10 \div 12\%$  compared to the previous range.


the body and lid are made with anodised aluminium, all the ejectors are made with stainless steel, as well as the fixing screws.


The state of the art seal is in EPDM and is never in contact with the sucked fluid; le reed valves, on the other hand, are made with silicon as a standard and in viton, upon request.

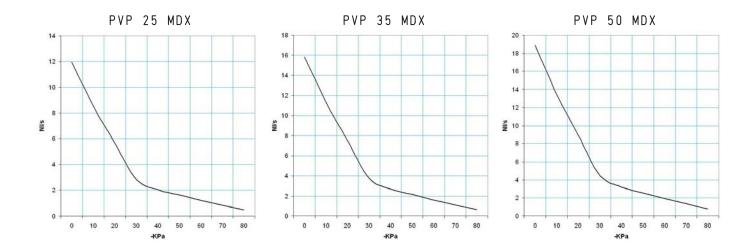

These new devices contain a housing for the installation, upon request, of a pneumatic vacuum switch, that, associated with a pneumatic slide valve and a special check valve, allows making an energy saving device. As a standard, these devices are equipped with a vacuum gauge a pressure gauge, a silencer on the exhaust and a quick coupler for the compressed air supply.

This new range of vacuum generators is perfectly interchangeable with the previous one.



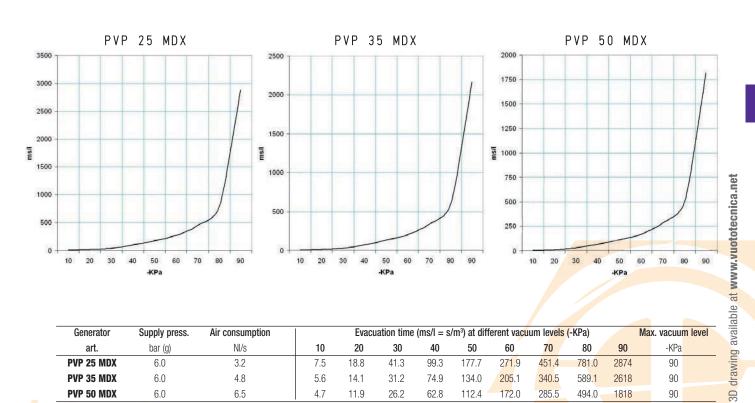






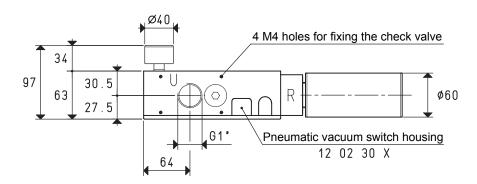


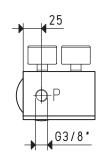

| INECTION  | R=EXHA                                                       | NUST                                                                         | U=VACUL                                                                                       | JM CONNEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TION                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|--------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                              |                                                                              | PVP 25 MDX                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           | PVP 35 MDX                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                               | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VP 50 MDX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| cum/h     | 35                                                           | 39                                                                           | 43                                                                                            | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                        | 57                                                                                                                                                                                                                                                                               | 57                                                                                                                                                                                                                                                                                                                                            | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -KPa      | 65                                                           | 82                                                                           | 90                                                                                            | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                                                                                               | 65                                                                                                                                                                                                                                                                                                                                            | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| mbar abs. | 350                                                          | 180                                                                          | 100                                                                                           | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                              | 350                                                                                                                                                                                                                                                                                                                                           | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| bar (g)   | 4                                                            | 5                                                                            | 6                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NI/s      | 2.3                                                          | 2.8                                                                          | 3.2                                                                                           | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1                                                                                                                                                                                                                                                       | 4.8                                                                                                                                                                                                                                                                              | 4.7                                                                                                                                                                                                                                                                                                                                           | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| °C        |                                                              |                                                                              | -20 / +80                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           | -20 / +80                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -20 / +80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| dB(A)     |                                                              |                                                                              | 58                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           | 58                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Kg        |                                                              |                                                                              | 1.71                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           | 1.73                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |                                                              |                                                                              |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| art.      |                                                              | (                                                                            | 00 KIT PVP 25 ME                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00                                                                                                                                                                                                                                                        | KIT PVP 35 MI                                                                                                                                                                                                                                                                    | DX                                                                                                                                                                                                                                                                                                                                            | 00 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (IT PVP 50 MDX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| art.      |                                                              |                                                                              | 09 03 15                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           | 09 03 15                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09 03 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| art.      |                                                              |                                                                              | 09 03 25                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           | 09 03 25                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09 03 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| art.      |                                                              |                                                                              | SSX 3/4"                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           | SSX 3/4"                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SSX 3/4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | cum/h -KPa mbar abs. bar (g) NI/s °C dB(A) Kg art. art. art. | cum/h 35 -KPa 65 mbar abs. 350 bar (g) 4 NI/s 2.3 °C dB(A) Kg art. art. art. | cum/h 35 39 -KPa 65 82 mbar abs. 350 180 bar (g) 4 5 NI/s 2.3 2.8 °C dB(A) Kg  art. art. art. | PVP 25 MDX  cum/h   35   39   43  -KPa   65   82   90  mbar abs.   350   180   100  bar (g)   4   5   6  NI/s   2.3   2.8   3.2  °C   -20 / +80  dB(A)   58  Kg   1.71  art.   00 KIT PVP 25 ME of the control of the co | PVP 25 MDX  cum/h   35   39   43   47  -KPa   65   82   90   65  mbar abs.   350   180   100   350  bar (g)   4   5   6   4  NI/s   2.3   2.8   3.2   3.4  °C   -20 / +80  dB(A)   58   1.71  art.   00 KIT PVP 25 MDX   09 03 15  art.   art.   09 03 25 | PVP 25 MDX  cum/h   35   39   43   47   52  -KPa   65   82   90   65   82  mbar abs.   350   180   100   350   180  bar (g)   4   5   6   4   5  NVs   2.3   2.8   3.2   3.4   4.1  °C   -20 / +80  dB(A)   58   1.71  art.   00 KIT PVP 25 MDX   00  art.   09 03 15   09 03 25 | PVP 25 MDX  CUM/h   35   39   43   47   52   57  -KPa   65   82   90   65   82   90  mbar abs.   350   180   100   350   180   100  bar (g)   4   5   6   4   5   6  NI/s   2.3   2.8   3.2   3.4   4.1   4.8  °C   -20 / +80   -20 / +80  dB(A)   58   58  Kg   1.71   1.73  art.   00 KIT PVP 25 MDX   09 03 15  art.   09 03 25   09 03 25 | PVP 25 MDX           cum/h         35         39         43         47         52         57         57           -KPa         65         82         90         65         82         90         65           mbar abs.         350         180         100         350         180         100         350           bar (g)         4         5         6         4         5         6         4           Nl/s         2.3         2.8         3.2         3.4         4.1         4.8         4.7           °C         -20 / +80         -20 / +80         -20 / +80         58         58           Kg         1.71         1.73         1.73           art.         09 03 15         09 03 15         09 03 15           art.         09 03 25         09 03 25         09 03 25 | PVP 25 MDX         PVP 35 MDX         F           cum/h         35         39         43         47         52         57         57         62           -KPa         65         82         90         65         82         90         65         82           mbar abs.         350         180         100         350         180         100         350         180           bar (g)         4         5         6         4         5         6         4         5           NI/s         2.3         2.8         3.2         3.4         4.1         4.8         4.7         5.6           °C         -20 / +80         -20 / +80         -20 / +80         58         58         58           Kg         1.71         1.73         1.73         1.73         00 KIT PVP 35 MDX         00 KIT PVP 35 MDX |

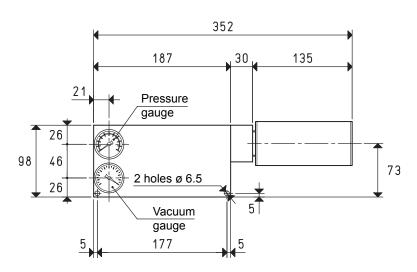

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

# Air capacity (NI/s) at different vacuum levels (-Kpa)




| Generator  | Supply press. | Air consumption |       | -     | Air capacit | y (NI/s) at | different | vacuum le | vels (-KPa) |      |      | Max. vacuum level |
|------------|---------------|-----------------|-------|-------|-------------|-------------|-----------|-----------|-------------|------|------|-------------------|
| art.       | bar (g)       | NI/s            | 0     | 10    | 20          | 30          | 40        | 50        | 60          | 70   | 80   | -KPa              |
| PVP 25 MDX | 6.0           | 3.2             | 11.94 | 8.53  | 5.68        | 2.84        | 2.03      | 1.62      | 1.22        | 0.85 | 0.48 | 90                |
| PVP 35 MDX | 6.0           | 4.8             | 15.83 | 11.30 | 7.53        | 3.76        | 2.69      | 2.15      | 1.61        | 1.13 | 0.64 | 90                |
| PVP 50 MDX | 6.0           | 6.5             | 18.88 | 13.48 | 8.99        | 4.49        | 3.21      | 2.56      | 1.93        | 1.35 | 0.77 | 90                |


### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)




| Generator  | Supply press. | Air consumption |     | Evacı | ation time | (ms/l = s) | /m³) at diff | erent vacu | um lev <mark>els</mark> | (-KPa) | Ma   | x. vacuu <mark>m level</mark> |
|------------|---------------|-----------------|-----|-------|------------|------------|--------------|------------|-------------------------|--------|------|-------------------------------|
| art.       | bar (g)       | NI/s            | 10  | 20    | 30         | 40         | 50           | 60         | 70                      | 80     | 90   | -KPa                          |
| PVP 25 MDX | 6.0           | 3.2             | 7.5 | 18.8  | 41.3       | 99.3       | 177.7        | 271.9      | 451.4                   | 781.0  | 2874 | 90                            |
| PVP 35 MDX | 6.0           | 4.8             | 5.6 | 14.1  | 31.2       | 74.9       | 134.0        | 205.1      | 340.5                   | 589.1  | 2618 | 90                            |
| PVP 50 MDX | 6.0           | 6.5             | 4.7 | 11.9  | 26.2       | 62.8       | 112.4        | 172.0      | 285.5                   | 494.0  | 1818 | 90                            |

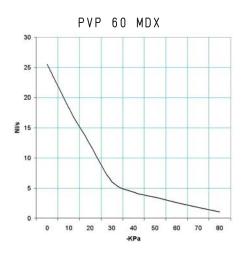


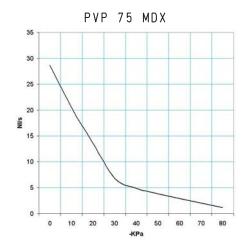






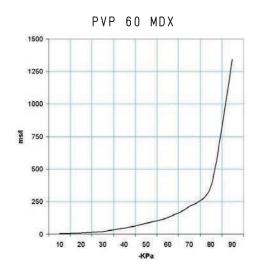


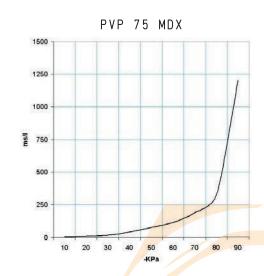

| P=COMPRESSED AIR CONNECTION | ON R=EXHAL | JST | U=VACUUM CONI | NECTION          |     |     |                   |
|-----------------------------|------------|-----|---------------|------------------|-----|-----|-------------------|
| Art.                        |            |     |               | PVP 60 MDX       |     |     | PVP 75 MDX        |
| Max. quantity of sucked air | cum/h      | 75  | 85            | 92               | 85  | 94  | 103               |
| Max. vacuum level           | -KPa       | 65  | 82            | 90               | 65  | 82  | 90                |
| Final pressure              | mbar abs.  | 350 | 180           | 100              | 350 | 180 | 100               |
| Supply pressure             | bar (g)    | 4   | 5             | 6                | 4   | 5   | 6                 |
| Air consumption             | NI/s       | 5.9 | 7.0           | 8.2              | 7.0 | 8.4 | 9.8               |
| Working temperature         | °C         |     |               | -20 / +80        |     |     | -20 / 80          |
| Noise level                 | dB(A)      |     |               | 62               |     |     | 64                |
| Weight                      | Kg         |     |               | 1.90             |     |     | 1.92              |
| Spare parts                 |            |     |               |                  |     |     |                   |
| Sealing kit and reed valve  | art.       |     |               | 00 KIT PVP 60 MD | (   |     | 00 KIT PVP 75 MDX |
| Vacuum gauge                | art.       |     |               | 09 03 15         |     |     | 09 03 15          |
| Pressure gauge              | art.       |     |               | 09 03 25         |     |     | 09 03 25          |
| Silencer                    | art.       |     |               | SSX 1"           |     |     | SSX 1"            |


Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

8.76

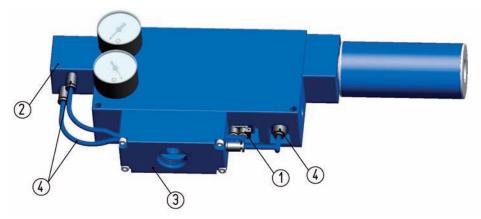
### Ĭ


# Air capacity (NI/s) at different vacuum levels (-Kpa)





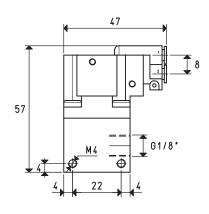

| Generator  | Supply press. | Air consumption |       |       | Air capacit | y (NI/s) at | different | vacuum le | vels (-KPa) |      |      | Max. vacuum level |
|------------|---------------|-----------------|-------|-------|-------------|-------------|-----------|-----------|-------------|------|------|-------------------|
| art.       | bar (g)       | NI/s            | 0     | 10    | 20          | 30          | 40        | 50        | 60          | 70   | 80   | -KPa              |
| PVP 60 MDX | 6.0           | 8.2             | 25.55 | 18.25 | 12.16       | 6.08        | 4.34      | 3.47      | 2.61        | 1.82 | 1.04 | 90                |
| PVP 75 MDX | 6.0           | 9.8             | 28.61 | 20.43 | 13.62       | 6.81        | 4.86      | 3.89      | 2.92        | 2.04 | 1.16 | 90                |


# Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)





| Generator  | Supply press. | Air consumption | 1   | Evac | cuation tim | e (ms/l = | s/m³) at dif | ferent vac | uum l <mark>eve</mark> ls | (-KPa) | Ma   | x. vacuun | m level |
|------------|---------------|-----------------|-----|------|-------------|-----------|--------------|------------|---------------------------|--------|------|-----------|---------|
| art.       | bar (g)       | NI/s            | 10  | 20   | 30          | 40        | 50           | 60         | 70                        | 80     | 90   | -KPa      |         |
| PVP 60 MDX | 6.0           | 8.2             | 3.5 | 8.8  | 19.3        | 46.4      | 83.0         | 127.0      | 211.0                     | 365.0  | 1343 | 90        |         |
| PVP 75 MDX | 6.0           | 9.8             | 3.1 | 7.8  | 17.2        | 41.4      | 74.2         | 113.5      | 188.4                     | 326.0  | 1200 | 90        |         |


### **VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX**

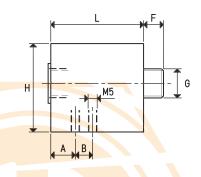


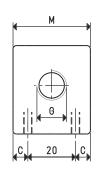
# ① - MINI PNEUMATIC VACUUM SWITCH

The vacuum switch removes a pneumatic signal as soon as a determined adjustable vacuum level is reached. The pressure differential between the set maximum value and the value of reset of the rest signal cannot be adjusted and it is equal to approximately 100 mbar.

The pneumatic vacuum switch installed on PVP  $25 \div 75$  MDX vacuum generators intervene on the supply slide valve and automatically maintain the maximum and minimum vacuum level within the differential level.







| Art.       | For generator   | Weight |
|------------|-----------------|--------|
|            | art.            | g      |
| 12 02 30 X | PVP 25 ÷ 50 MDX | 104    |
|            | PVP 60 ÷ 75 MDX |        |

# 2 - SERVO-CONTROLLED SUPPLY SLIDE VALVE

This valve is provided with slide shutter that, once pneumatically activated by the vacuum switch or by alternative sources intercepts the generator compressed air supply, with pressure ranging from 1.5 and 7 bar (g).

The value is according to the generator supply connection.





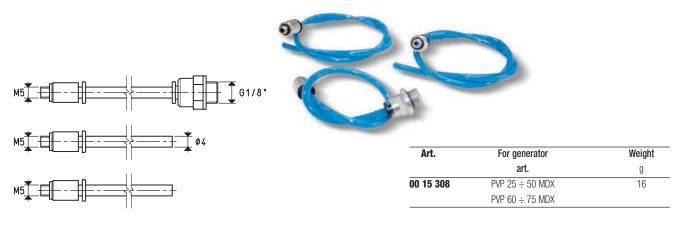


| Art.    |   | Α    | В   | С    | F   | G     | Н  | L  | M  | Weight | For generator   |
|---------|---|------|-----|------|-----|-------|----|----|----|--------|-----------------|
| Art.    |   |      |     |      |     | Ø     |    |    |    | g      | art.            |
| 07 01 7 | 0 | 11.5 | 8.0 | 7.5  | 9.5 | G1/4" | 40 | 42 | 35 | 190    | PVP 25 ÷ 50 MDX |
| 07 02 7 | 0 | 13.5 | 9.5 | 12.5 | 9.5 | G3/8" | 50 | 51 | 45 | 420    | PVP 60 ÷ 75 MDX |

8.78

### **VACUUM GENERATORS ACCESSORIES PVP 25 ÷ 75 MDX**

# **3 - MEMBRANE CHECK VALVE**


This check valve has been specially designed for PVP  $25 \div 75$  MDX vacuum generators. Its distinctive feature, along with its shape, is its membrane check valve that

guarantees minimal load loss, quick intervention and perfect sealing.



# 4 - HOSE KIT WITH FITTINGS

This hose kit is for connecting the vacuum switch to the supply slide valve and to the membrane check valve. On the hose ends are installed the special quick couplers to screw onto the valve and vacuum switch connections.

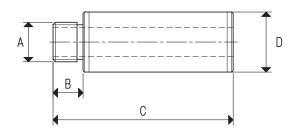


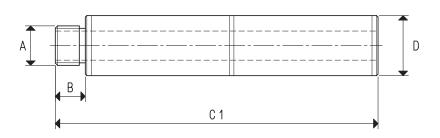


# COMPLETE ES ENERGY SAVING DEVICE KIT

| Art.  | For gen <mark>erator</mark> | Weight |
|-------|-----------------------------|--------|
|       | art.                        | g      |
| ES 01 | PVP 25 ÷ 50 MDX             | 475    |
| ES 02 | $PVP 60 \div 75 MDX$        | 998    |

Note: To order multi-stage vacuum generators with energy-saving device, add the letters ES to the the code (E.g.: PVP 25 MDX ES).


### **SILENCERS**


The use of natural fibre sound absorbing material enclosed in special anodised aluminium casings has allowed creating this new range of silencers that considerably reduce noise made by air at the vacuum generator exhaust.

There are two versions with different lengths: the longer the length and the more will the noise be reduced.

Noise reduction: from -13 to -20 dB (A); Working temperature: from -20 to +100  $^{\circ}$ C.







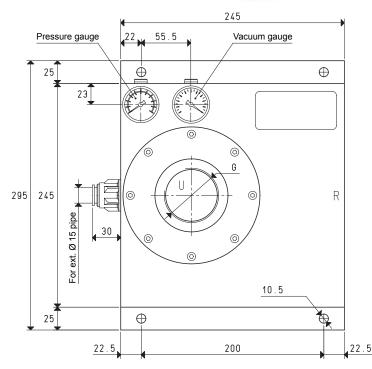
| Art.       | А       | В  | С   | C1  | D  | Weight |
|------------|---------|----|-----|-----|----|--------|
| ALL        | Ø       |    |     |     | Ø  | g      |
| SSX 1/4"   | G1/4"   | 10 | 60  |     | 20 | 20     |
| SSX 3/8"   | G3/8"   | 12 | 84  |     | 29 | 52     |
| SSX 1/2"   | G1/2"   | 14 | 106 |     | 35 | 96     |
| SSX 3/4" R | G3/4"   | 14 | 106 |     | 35 | 100    |
| SSX 3/4"   | G3/4"   | 14 | 126 |     | 50 | 174    |
| SSX 1"     | G1"     | 14 | 146 |     | 55 | 240    |
| SSX 1" 1/2 | G1" 1/2 | 30 | 210 |     | 80 | 302    |
| SSX 2"     | G2"     | 30 | 230 |     | 90 | 372    |
| 2SSX 1/4"  | G1/4"   | 10 |     | 108 | 20 | 40     |
| 2SSX 3/8"  | G3/8"   | 12 |     | 154 | 29 | 104    |
| 2SSX 1/2"  | G1/2"   | 14 |     | 196 | 35 | 192    |
| 2SSX 3/4"  | G3/4"   | 14 |     | 236 | 50 | 348    |
| 2SSX 1"    | G1"     | 14 |     | 276 | 55 | 480    |

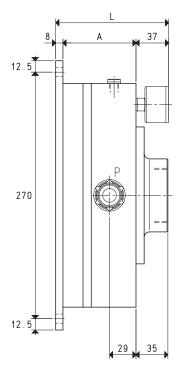
### o

# 3D drawing available at www.vuototecnica.net

# MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 ÷ 600 MD

The special shape of these vacuum generators has allowed obtaining great suction capacities in very limited overall dimensions. The ejectors share the same features as the previous ones, but instead of being fixed directly onto the generator body, they are assembled onto modular frames. The superimposition of one or more frames determines the generator capacity. They are supplied by filtered compressed air with an optimal pressure of 6 bar (g), and they can create a maximum vacuum of 90%, with a suction capacity ranging from 200 to 750 cum/h, measured at the normal atmospheric pressure of 1013 mbar.


They are fully made with anodised aluminium with disc valves and special compound seals.


They are perfectly soundproofed which results in an extremely silent operation.



### MODULAR MULTI-STAGE VACUUM GENERATORS PVP 150 MD and 300 MD

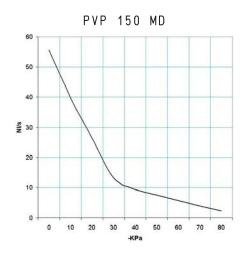


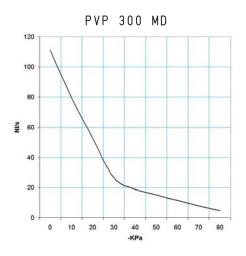






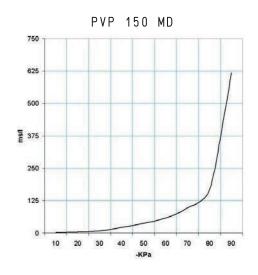
| P=COMPRESSED AIR CONN       | IECTION R=EXHA | UST U | =VACUUM CONN | NECTION           |      |      | U                 |
|-----------------------------|----------------|-------|--------------|-------------------|------|------|-------------------|
| Art.                        |                |       |              | PVP 150 MD        |      |      | PVP 300 MD        |
| Max. quantity of sucked air | cum/h          | 160   | 180          | 200               | 320  | 360  | 400               |
| Max. vacuum level           | -KPa           | 65    | 82           | 90                | 65   | 82   | 90                |
| Final pressure              | mbar abs.      | 350   | 180          | 100               | 350  | 180  | 100               |
| Supply pressure             | bar (g)        | 4     | 5            | 6                 | 4    | 5    | 6                 |
| Air consumption             | NI/s           | 12.1  | 14.2         | 16.0              | 23.2 | 27.8 | 32.0              |
| Working temperature         | °C             |       |              | -20 / +80         |      |      | -20 / +80         |
| Noise level                 | dB(A)          |       |              | 72                |      |      | 74                |
| Weight                      | Kg             |       |              | 7.8               |      |      | 8.8               |
| A                           |                |       |              | 80                |      |      | 100               |
| G                           | Ø              |       |              | G1" 1/2           |      |      | G2"               |
| L                           |                |       |              | 125               |      |      | 145               |
| Spare parts                 |                |       |              |                   |      |      |                   |
| Sealing kit e disc valves   | art.           |       |              | 00 KIT PVP 150 ME | )    |      | 00 KIT PVP 300 ME |
| Vacuum gauge                | art.           |       |              | 09 03 15          |      |      | 09 03 15          |
| Pressure gauge              | art.           |       |              | 09 03 25          |      |      | 09 03 25          |

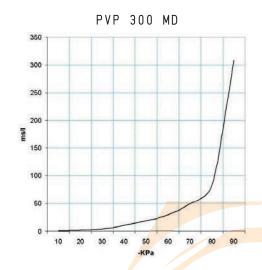

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.


By adding the letter R to the article, the generator will be supplied with a built-in check valve (E.g.: PVP 300 MDR).

8.82

### Ĭ

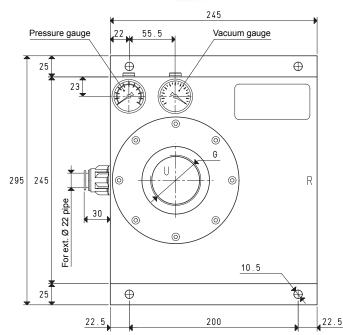

### Air capacity (NI/s) at different vacuum levels (-Kpa)

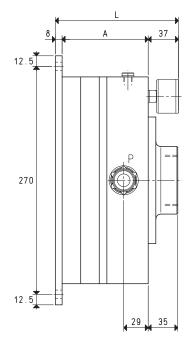





| Generator  | Supply press. | Air consumption |        | Air capacity (NI/s) at different vacuum levels (-KPa)  Max. vacuum |       |       |       |       |       |      | Max. vacuum level |      |
|------------|---------------|-----------------|--------|--------------------------------------------------------------------|-------|-------|-------|-------|-------|------|-------------------|------|
| art.       | bar (g)       | NI/s            | 0      | 10                                                                 | 20    | 30    | 40    | 50    | 60    | 70   | 80                | -KPa |
| PVP 150 MD | 6.0           | 16              | 55.55  | 39.68                                                              | 26.45 | 13.22 | 9.44  | 7.55  | 5.68  | 3.97 | 2.27              | 90   |
| PVP 300 MD | 6.0           | 32              | 111.11 | 79.36                                                              | 52.91 | 26.45 | 19.89 | 15.11 | 11.36 | 7.94 | 4.54              | 90   |

### Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)




| Generator  | Supply press. | Air consumption |     | Evacu | ation time | (ms/l = s/l) | /m³) at diff | erent vacuu | ım <mark>level</mark> s | (-KPa) | Ma  | x. vacuum | level |
|------------|---------------|-----------------|-----|-------|------------|--------------|--------------|-------------|-------------------------|--------|-----|-----------|-------|
| art.       | bar (g)       | NI/s            | 10  | 20    | 30         | 40           | 50           | 60          | 70                      | 80     | 90  | -KPa      |       |
| PVP 150 MD | 6.0           | 16              | 1.6 | 4.0   | 8.9        | 21.3         | 38.2         | 58.4        | 97.0                    | 167.8  | 618 | 90        |       |
| PVP 300 MD | 6.0           | 32              | 0.8 | 2.0   | 4.4        | 10.6         | 19.1         | 29.2        | 48.5                    | 83.9   | 386 | 90        |       |

### MODULAR MULTI-STAGE VACUUM GENERATORS PVP 450 MD and 600 MD

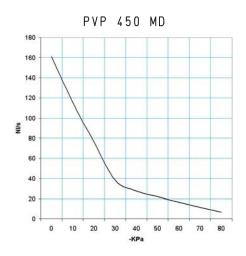


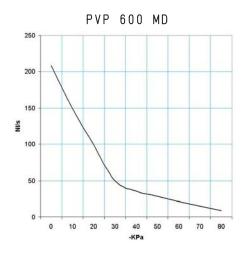






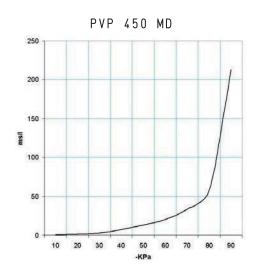
| P=COMPRESSED AIR CONN       | IECTION R=EXHA | UST U | =VACUUM CON | NECTION           |      |      |                   |
|-----------------------------|----------------|-------|-------------|-------------------|------|------|-------------------|
| Art.                        |                |       |             | PVP 450 MD        |      |      | PVP 600 MD        |
| Max. quantity of sucked air | cum/h          | 490   | 530         | 580               | 640  | 700  | 750               |
| Max. vacuum level           | -KPa           | 65    | 82          | 90                | 65   | 82   | 90                |
| Final pressure              | mbar abs.      | 350   | 180         | 100               | 350  | 180  | 100               |
| Supply pressure             | bar (g)        | 4     | 5           | 6                 | 4    | 5    | 6                 |
| Air consumption             | NI/s           | 34.4  | 39.4        | 47.8              | 43.2 | 53.5 | 63.2              |
| Working temperature         | °C             |       |             | -20 / +80         |      |      | -20 / +80         |
| Noise level                 | dB(A)          |       |             | 74                |      |      | 78                |
| Weight                      | Kg             |       |             | 9.9               |      |      | 11.1              |
| A                           |                |       |             | 122               |      |      | 142               |
| G                           | Ø              |       |             | G2" 1/2           |      |      | G3"               |
| L                           |                |       |             | 167               |      |      | 187               |
| Spare parts                 |                |       |             |                   |      |      |                   |
| Sealing kit e disc valves   | art.           |       |             | 00 KIT PVP 450 MD | )    |      | 00 KIT PVP 600 MD |
| Vacuum gauge                | art.           |       |             | 09 03 15          |      |      | 09 03 15          |
| Pressure gauge              | art.           |       |             | 09 03 25          |      |      | 09 03 25          |

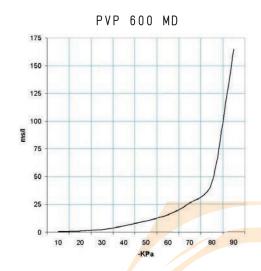

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.


By adding the letter R to the article, the generator will be supplied with a built-in check valve (E.g.: PVP 450 MDR).

8.84

### Ĭ


### Air capacity (NI/s) at different vacuum levels (-Kpa)






| Generator  | Supply press. | Air consumption |        | Air capacity (NI/s) at different vacuum levels (-KPa) |       |       |       |       |       |       |      | Max. vacuum level |
|------------|---------------|-----------------|--------|-------------------------------------------------------|-------|-------|-------|-------|-------|-------|------|-------------------|
| art.       | bar (g)       | NI/s            | 0      | 10                                                    | 20    | 30    | 40    | 50    | 60    | 70    | 80   | -KPa              |
| PVP 450 MD | 6.0           | 47.8            | 161.11 | 115.07                                                | 76.71 | 38.35 | 27.39 | 21.91 | 16.48 | 11.52 | 6.58 | 90                |
| PVP 600 MD | 6.0           | 63.2            | 208.33 | 148.80                                                | 99.20 | 49.60 | 35.43 | 28.34 | 21.31 | 14.90 | 8.51 | 90                |

# Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)





| Generator         | Supply press. | Air consumption |     | Evacu | ation time | (ms/l = s/ | m³) at diff | erent vacuu | ım <mark>level</mark> s | (-KPa) | N   | Max. vacuu <mark>m level</mark> |
|-------------------|---------------|-----------------|-----|-------|------------|------------|-------------|-------------|-------------------------|--------|-----|---------------------------------|
| art.              | bar (g)       | NI/s            | 10  | 20    | 30         | 40         | 50          | 60          | 70                      | 80     | 90  | -KPa                            |
| PVP 450 MD        | 6.0           | 47.8            | 0.5 | 1.4   | 3.0        | 7.4        | 13.2        | 20.1        | 33.5                    | 57.9   | 213 | 90                              |
| <b>PVP 600 MD</b> | 6.0           | 63.2            | 0.4 | 1.0   | 2.4        | 5.7        | 10.2        | 15.6        | 25.9                    | 44.8   | 165 | 90                              |

30

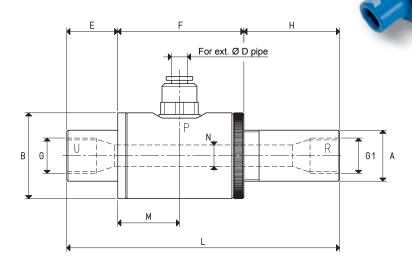
The operation of these vacuum generators is based on the Venturi principle.

Unlike the previous ones, the ejector, apart from having a much larger flow diameter, is also adjustable.

This feature allows modifying the capacity and the vacuum level of the device, without intervening on the air supply pressure level.

Also the compressed air consumption is related to the actual performance of the vacuum generator. Features

The special shape of these adjustable vacuum generators, as well as their straight-flow working principle allow sucking and transferring products of various nature with no interference, just like flow generators, only, unlike these, they allow overcoming much higher level differences.


They are suited for transferring powders, granulated products, sawdust, metal chips, dry or liquid food products, etc. They are also recommended for controlling vacuum cups in presence of large amounts of dust or liquids, as well as for sucking fumes, cooling mists, water and oil condensation, etc. The absence of moving parts allows for a continuous use without developing heat.

The noise level, which is quite high for this kind of equipment, can be considerably reduced with a silencer screwed on the exhaust connection.

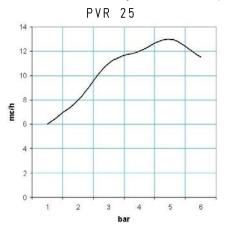
They do not require electricity, therefore, they can even be used in work environments with hazardous environments where an ignition source would be dangerous.

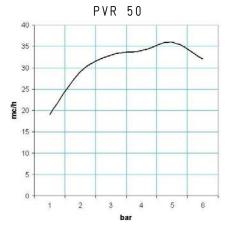
Available in anodised aluminium and stainless steel.

Thanks to all these features, a good filtration of the compressed air supply will be sufficient to make these devices fully maintenance-free.

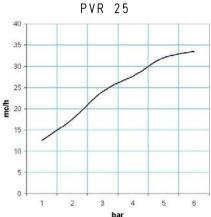


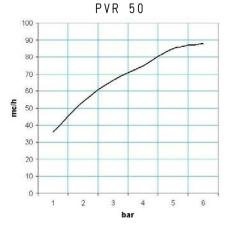



| P=COMPRESSED AIR CONNECTION               | R=EXHAUST | U=VACUUM CONNECTION | , U       |
|-------------------------------------------|-----------|---------------------|-----------|
| Art.                                      |           | PVR 25              | PVR 50    |
| Max quantità di aria aspirata a 5 bar (g) | cum/h     | 13.0                | 36.0      |
| Max. quantity of blown air at 6 bar (g)   | cum/h     | 33.5                | 88.0      |
| Max. vacuum level                         | -KPa      | 80                  | 75        |
| inal pressure                             | mbar abs. | 200                 | 250       |
| Nax pressione di alimentazione            | bar (g)   | 6                   | 6         |
| ir consumption at 6 bar (g)               | NI/s      | 6.1                 | 15.5      |
| Vorking temperature                       | °C        | -20 / +80           | -20 / +80 |
| loise level                               | dB(A)     | 92                  | 98        |
| /eight                                    | g         | 150                 | 280       |
|                                           | Ø         | 19                  | 26        |
|                                           | Ø         | 32                  | 38        |
|                                           | Ø         | 6                   | 8         |
|                                           |           | 19                  | 35        |
|                                           |           | 47                  | 54        |
|                                           | Ø         | G1/4"               | G3/8"     |
| 1                                         | Ø         | G1/4"               | G1/2"     |
|                                           |           | 34                  | 61        |
|                                           |           | 100                 | 150       |
| 1                                         |           | 22                  | 25        |
|                                           | 0         | 6                   | 10        |

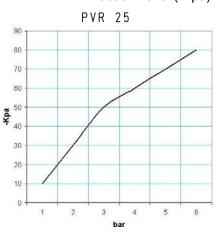

Note:All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

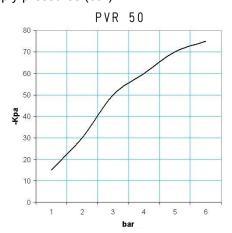
By adding the letter I to the article, the generator will be supplied in the stainless steel version (E.g.: PVR 50 I).


# 3D drawing available at www.vuototecnica.net

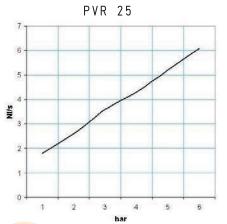

### Quantity of sucked air (cum/h) at different supply pressures (bar)

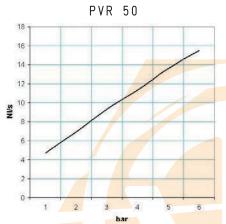






# Quantity of blown air (cum/h) at different supply pressures (bar)

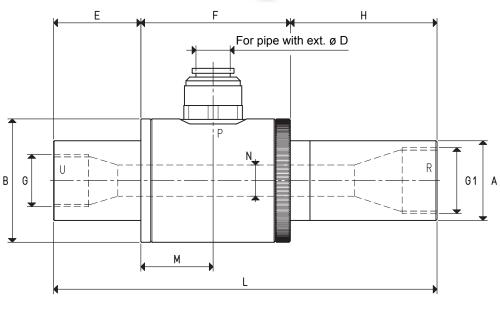






### Vacuum level (-Kpa) at different supply pressures (bar)






### Air consumption (NI/s) at different supply pressures (bar)

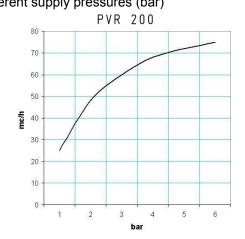


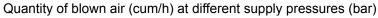


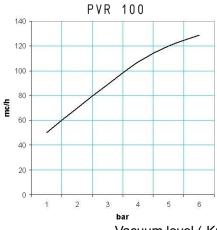
### ADJUSTABLE VACUUM GENERATORS CONEYOR PVR 100 and PVR 200

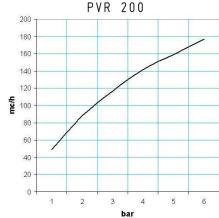




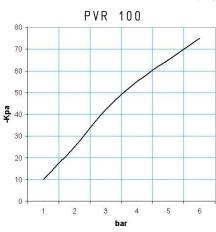


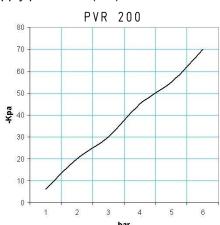


| P=COMPRESSED AIR CONNECTION               | R=EXHAUST | U=VACUUM CONNECTION |           |
|-------------------------------------------|-----------|---------------------|-----------|
| Art.                                      |           | PVR 100             | PVR 200   |
| Max quantità di aria aspirata a 5 bar (g) | cum/h     | 50                  | 72        |
| Max. quantity of blown air at 6 bar (g)   | cum/h     | 129                 | 177       |
| Max. vacuum level                         | -KPa      | 75                  | 70        |
| Final pressure                            | mbar abs. | 250                 | 300       |
| Max pressione di alimentazione            | bar (g)   | 6                   | 6         |
| Air consumption at 6 bar (g)              | NI/s      | 22.7                | 28.3      |
| Working temperature                       | °C        | -20 / +80           | -20 / +80 |
| Noise level                               | dB(A)     | 100                 | 104       |
| Weight                                    | g         | 430                 | 550       |
| A                                         | Ø         | 32                  | 38        |
| В                                         | Ø         | 50                  | 57        |
| D                                         | Ø         | 10                  | 12        |
| E                                         |           | 35                  | 35        |
| F                                         |           | 60                  | 60        |
| G                                         | Ø         | G1/2"               | G3/4"     |
| G1                                        | Ø         | G3/4"               | G1"       |
| Н                                         |           | 55                  | 77        |
|                                           |           | 150                 | 172       |
| М                                         |           | 28                  | 28        |
| N                                         | Ø         | 12.5                | 16.0      |


Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

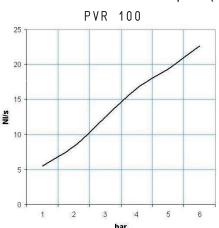

By adding the letter I to the article, the generator will be supplied in the stainless steel version (E.g.: PVR 100 I).

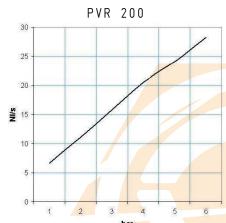
# Quantity of sucked air (cum/h) at different supply pressures (bar) PVR 100 60 50 40 **uc/** 30 20 10 0 -140 120







Vacuum level (-Kpa) at different supply pressures (bar)





Air consumption (NI/s) at different supply pressures (bar)





### ACCESSORIES FOR ADJUSTABLE VACUUM GENERATORS CONVEYOR

The noise level of adjustable vacuum generators Conveyor is always quite high, but it can be considerably reduced with a silencer screwed on the exhaust connection. Upon request, silencers of the SSX range, which are suitable for any kind of Conveyor vacuum generator, can be supplied.

The table below shows the codes of the silencers associated with the various vacuum generators.

### PVR 25 with exhaust silencer SSX 1/4" and vacuum cup 08 53 35 S



### PVR 50 with exhaust silencer 2SSX 1/2"



### PVR 100 with exhaust silencer SSX 3/4"

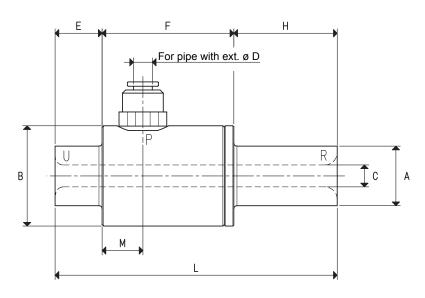


| Art.    | Silencer | Noise     | Silencer  | Noise     |
|---------|----------|-----------|-----------|-----------|
|         |          | reduction |           | reduction |
|         | art.     | dB(A)     | art.      | dB(A)     |
| PVR 25  | SSX 1/4" | -13       | 2SSX 1/4" | -20       |
| PVR 50  | SSX 1/2" | -13       | 2SSX 1/2" | -20       |
| PVR 100 | SSX 3/4" | -13       | 2SSX 3/4" | -20       |
| PVR 200 | SSX 1"   | -13       | 2SSX 1"   | -20       |

### FLOW GENERATOR VACUUM JET



### Working principle


The compressed air supply blown into a ring chamber concentric to the device, flows at a very high speed towards the centre of the main pipe, thus forming a cyclonic effect. The latter creates a vacuum inside the device and leads a great volume of air towards its outlet. Therefore, a variation of the air supply pressure will modify the vacuum level and the amount of sucked air.

### Features

The special shape of these adjustable vacuum generators, as well as their straight-flow working principle allow sucking and transferring products of various nature with no interference. In fact, Vacuum Jet flow generators are suited for transferring powders, granulated products, sawdust, metal chips, dry or liquid food products, etc. They are also recommended for controlling vacuum cups in presence of large amounts of dust or liquids, as well as for sucking fumes, cooling mists, water and oil condensation, etc. The absence of moving parts allows for a continuous use without developing heat.

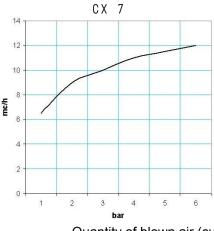
Available in anodised aluminium and stainless steel.

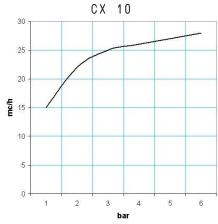
Thanks to all these features, a good filtration of the compressed air supply will be sufficient to make these devices fully maintenance-free.



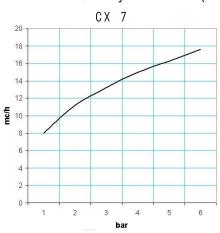


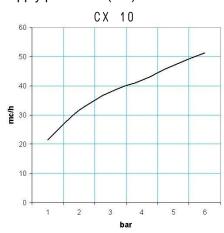
| P=COMPRESSED AIR CONNECTION              | R=EXHAUST | U=VACUUM CONNECTION | - U -     |
|------------------------------------------|-----------|---------------------|-----------|
| Art.                                     |           | CX 7                | CX 10     |
| Max. quantity of sucked air at 6 bar (g) | cum/h     | 12.0                | 28.0      |
| Max. quantity of blown air at 6 bar (g)  | cum/h     | 17.6                | 51.4      |
| Max. vacuum level                        | -KPa      | 15                  | 22        |
| Final pressure                           | mbar abs. | 850                 | 780       |
| Max pressione di alimentazione           | bar (g)   | 6                   | 6         |
| Air consumption at 6 bar (g)             | NI/s      | 1.5                 | 6.5       |
| Working temperature                      | °C        | -20 / +80           | -20 / +80 |
| Noise level                              | dB(A)     | 75                  | 84        |
| Weight                                   | g         | 110                 | 104       |
| A                                        | Ø         | 19                  | 19        |
| В                                        | Ø         | 32                  | 32        |
| C                                        | Ø         | 7                   | 10        |
| D                                        | Ø         | 6                   | 6         |
| E                                        |           | 15                  | 15        |
| F                                        |           | 42                  | 42        |
| H                                        |           | 33                  | 33        |
| L                                        |           | 90                  | 90        |
| M                                        |           | 13                  | 13        |


Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

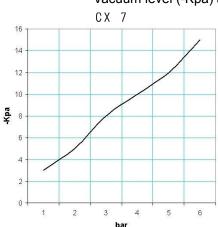

By adding the letter I to the article, the generator will be supplied in the stainless steel version (E.g.: CX 10 I).

30


# FLOW GENERATOR VACUUM JET, CX 7 and CX 10

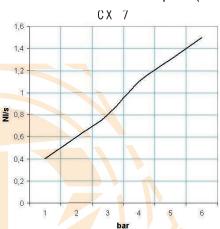

# Quantity of sucked air (cum/h) at different supply pressures (bar)






### Quantity of blown air (cum/h) at different supply pressures (bar)

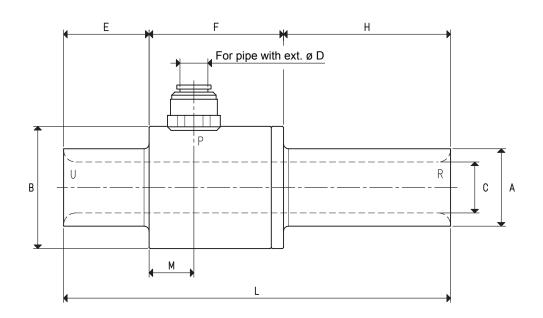






### Vacuum level (-Kpa) at different supply pressures (bar)






# Air consumption (NI/s) at different supply pressures (bar)

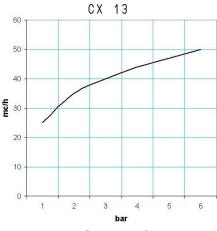


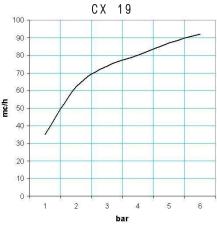




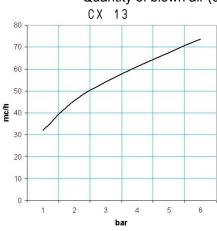


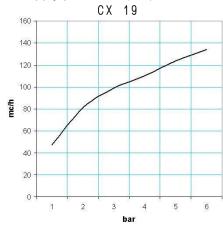



| P=COMPRESSED AIR CONNECTION              | R=EXHAUST | U=VACUUM CONNECTION | U         |
|------------------------------------------|-----------|---------------------|-----------|
| Art.                                     |           | CX 13               | CX 19     |
| Max. quantity of sucked air at 6 bar (g) | cum/h     | 50.0                | 92.0      |
| Max. quantity of blown air at 6 bar (g)  | cum/h     | 73.7                | 134.0     |
| Max. vacuum level                        | -KPa      | 18                  | 16        |
| Final pressure                           | mbar abs. | 820                 | 840       |
| Max pressione di alimentazione           | bar (g)   | 6                   | 6         |
| Air consumption at 6 bar (g)             | NI/s      | 6.6                 | 11.6      |
| Working temperature                      | °C        | -20 / +80           | -20 / +80 |
| Noise level                              | dB(A)     | 88                  | 92        |
| Weight                                   | g         | 280                 | 500       |
| A                                        | Ø         | 25                  | 32        |
| В                                        | Ø         | 45                  | 54        |
| C                                        | Ø         | 13                  | 19        |
| D                                        | Ø         | 8                   | 10        |
| E                                        |           | 30                  | 43        |
| F                                        |           | 55                  | 65        |
| Н                                        |           | 55                  | 82        |
| L                                        |           | 140                 | 190       |
| M                                        |           | 18                  | 22        |

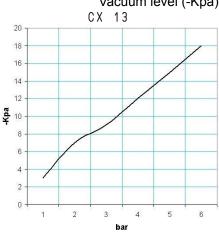

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

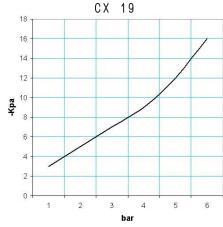
By adding the letter I to the article, the generator will be supplied in the stainless steel version (E.g.: CX 13 I).


# FLOW GENERATOR VACUUM JET, CX 13 and CX 19

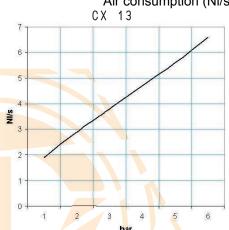

# Quantity of sucked air (cum/h) at different supply pressures (bar)

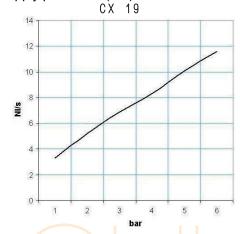




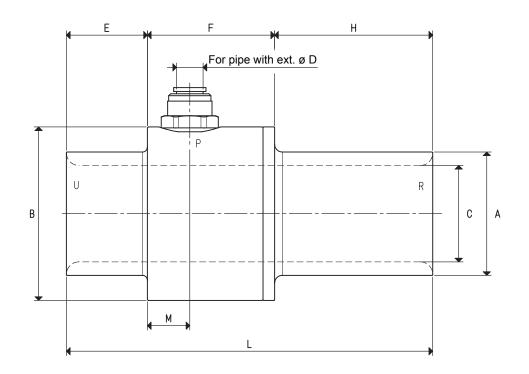


### Quantity of blown air (cum/h) at different supply pressures (bar)







# Vacuum level (-Kpa) at different supply pressures (bar)





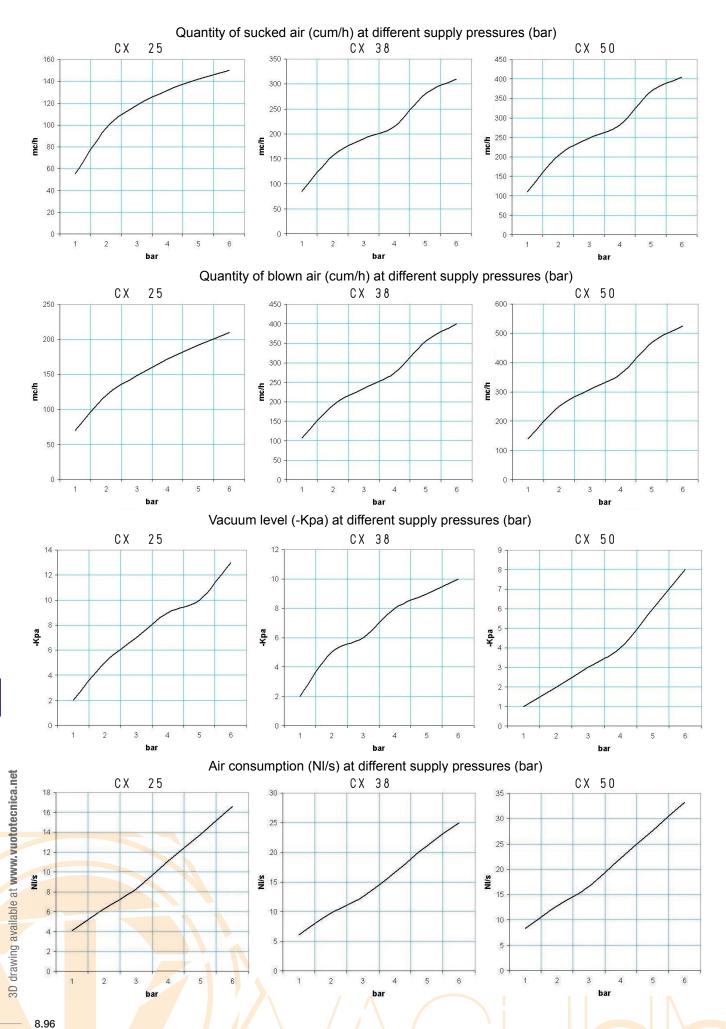

### Air consumption (NI/s) at different supply pressures (bar)












| P=COMPRESSED AIR CONNECTION              | R=EXHAUST | U=VACUUM CONNECTION |           | _U_       |
|------------------------------------------|-----------|---------------------|-----------|-----------|
| Art.                                     |           | CX 25               | CX 38     | CX 50     |
| Max. quantity of sucked air at 6 bar (g) | cum/h     | 150                 | 310       | 405       |
| Max. quantity of blown air at 6 bar (g)  | cum/h     | 210                 | 400       | 525       |
| Max. vacuum level                        | -KPa      | 13                  | 10        | 8         |
| Final pressure                           | mbar abs. | 870                 | 900       | 920       |
| Max. supply pressure                     | bar (g)   | 6.0                 | 6.0       | 6.0       |
| Air consumption at 6 bar (g)             | NI/s      | 16.6                | 25.0      | 33.3      |
| Working temperature                      | °C        | -20 / +80           | -20 / +80 | -20 / +80 |
| Noise level                              | dB(A)     | 100                 | 103       | 103       |
| Weight                                   | g         | 560                 | 800       | 1090      |
| A                                        | Ø         | 38                  | 51        | 64        |
| В                                        | Ø         | 60                  | 75        | 90        |
| C                                        | Ø         | 25                  | 38        | 50        |
| D                                        | Ø         | 10                  | 12        | 16        |
| E                                        |           | 42                  | 42        | 42        |
| F                                        |           | 66                  | 66        | 66        |
| Н                                        |           | 82                  | 82        | 82        |
| L                                        |           | 190                 | 190       | 190       |
| M                                        |           | 22                  | 22        | 22        |

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

By adding the letter I to the article, the generator will be supplied in the stainless steel version (E.g.: CX 38 I).

# FLOW GENERATOR VACUUM JET, CX 25, CX 38 and CX 50



### MINI PNEUMATIC PUMPSETS DOP 06 and DOP 10

Mini pneumatic pumpsets are independent vacuum units, fed exclusively by compressed air and featuring very small sizes. They are composed of:

- A small welded sheet steel tank.

- A compressed air-operated vacuum generator.

- A pneumatic vacuum switch for adjusting the vacuum level.

- A vacuum gauge for a direct reading of the vacuum level.

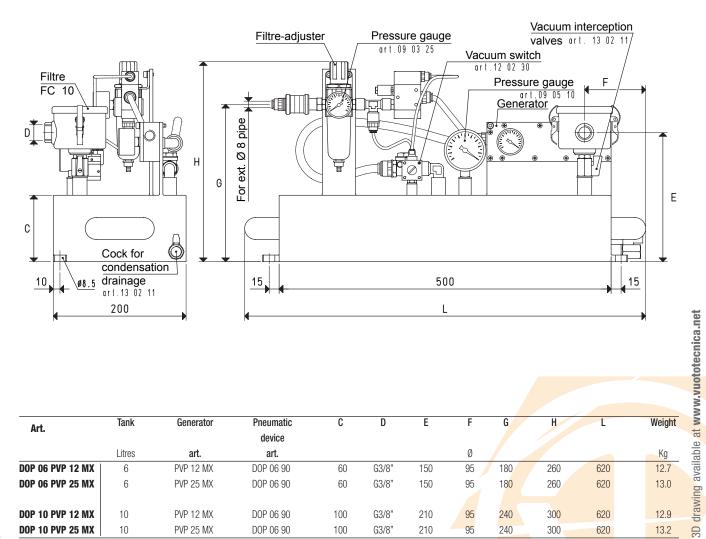
- A manual valve for vacuum interception.

- A suction filtre with an FC paper cartridge.

- A pressure adjuster equipped with filtre.

- A pneumatic activation valve for the vacuum generator supply. - A sleeve valve for compressed air interception.

- for compressed air interception for draining condensation from the tank.

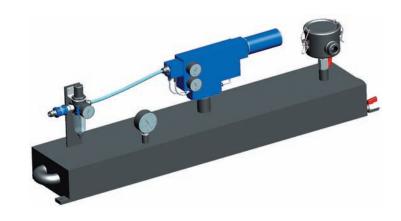

the vacuum level in the tank, previously set with the vacuum switch, is automatically

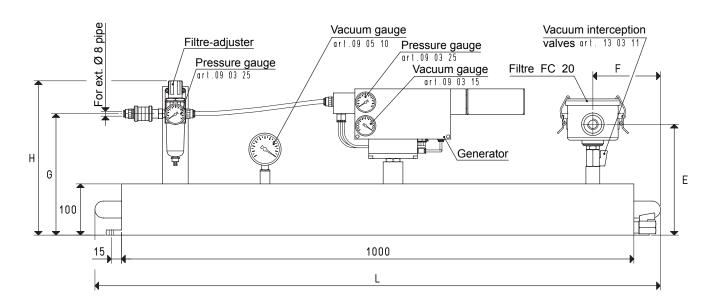
Mini pneumatic pumpsets are suited for equipping small fixed and mobile working units that require vacuum, such as:

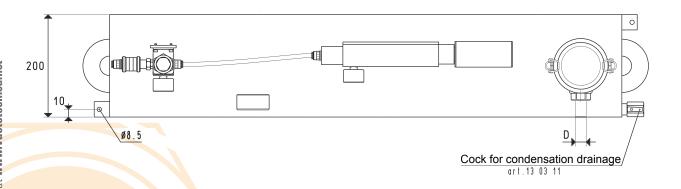
- Trolleys with vacuum cups for fixing and transporting glass and crystals. - Vacuum clamping systems for ski maintenance, to drill or pantograph marble, to polish pewter, copper or silver objects, etc.

- Tackles with cups for lifting television sets and other household aplliances, for the insertion of glass in the window fittings, for feeding sheet metal to presses, etc.

Mini pneumatic pumpsets require no electricity, only compressed air at a  $4 \div 6$  bar (g) pressure. For this feature they are recommended in hazardous environments where an ignition source would be dangerous.





| Art.             | Tank   | Generator | Pneumatic | C   | D     | E   | F  | G   | Н   | L   | Weight |
|------------------|--------|-----------|-----------|-----|-------|-----|----|-----|-----|-----|--------|
| AI G             |        |           | device    |     |       |     |    |     |     |     |        |
|                  | Litres | art.      | art.      |     |       |     | Ø  |     |     |     | Kg     |
| DOP 06 PVP 12 MX | 6      | PVP 12 MX | DOP 06 90 | 60  | G3/8" | 150 | 95 | 180 | 260 | 620 | 12.7   |
| DOP 06 PVP 25 MX | 6      | PVP 25 MX | DOP 06 90 | 60  | G3/8" | 150 | 95 | 180 | 260 | 620 | 13.0   |
|                  |        |           |           |     |       |     |    |     |     |     |        |
| DOP 10 PVP 12 MX | 10     | PVP 12 MX | DOP 06 90 | 100 | G3/8" | 210 | 95 | 240 | 300 | 620 | 12.9   |
| DOP 10 PVP 25 MX | 10     | PVP 25 MX | DOP 06 90 | 100 | G3/8" | 210 | 95 | 240 | 300 | 620 | 13.2   |


### MINI PNEUMATIC PUMPSETS DOP 20

The distinctive feature of this mini pumpset, apart from the tank volume, is the installed vacuum generator.

The vacuum generator of the PVP... MDX ES range, in fact, is equipped with an energy saving device which allows automatically maintaining the preset vacuum level inside the tank. The other accessories, except for the vacuum switch and the pneumatic activation valve for the vacuum generator supply, are the same as those installed on DOP 06 and DOP 10. They are used as the previously described mini pneumatic pumpsets.







| Art.                            | Tank   | Generator     | Pneumatic<br>device | D     | E   | F   | G   | Н   | L    | Weight |
|---------------------------------|--------|---------------|---------------------|-------|-----|-----|-----|-----|------|--------|
|                                 | Litres | art.          | art.                | Ø     |     |     |     |     |      | Kg     |
| DOP 20 <mark>PVP 25 M</mark> DX | 20     | PVP 25 MDX ES | DOP 20 90           | G1/2" | 225 | 135 | 270 | 340 | 1110 | 20.6   |
| DOP 20 <mark>PVP 35 M</mark> DX | 20     | PVP 35 MDX ES | DOP 20 90           | G1/2" | 225 | 135 | 270 | 340 | 1110 | 20.7   |

### PNEUMATIC PUMPSETS DOP 25, DOP 50 and DOP 100

Pneumatic pumpsets are independent vacuum units fed exclusively by compressed air. They are composed of:

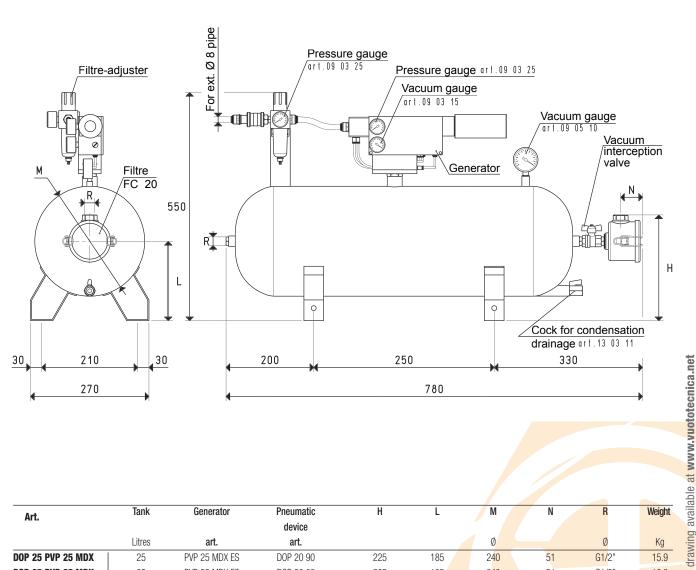
- A welded sheet steel tank.

- A compressed air-operated vacuum generator PVP ... MDX ES, equipped with an energy saving device.

- A vacuum gauge for a direct reading of the vacuum level.

- A manual valve for vacuum interception.

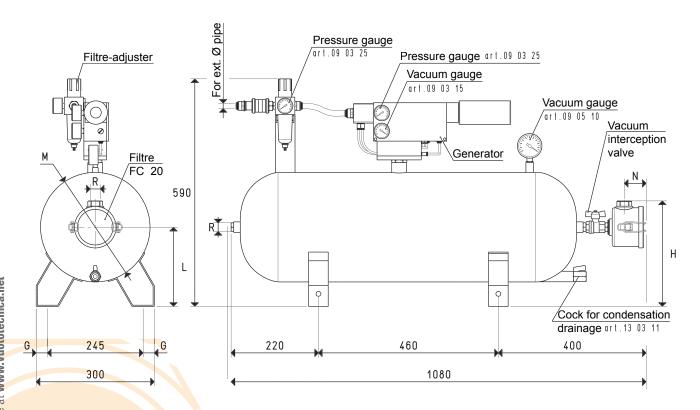
- A suction filtre with an FC paper cartridge.


- A pressure adjuster equipped with filtre.

- A sleeve valve for compressed air interception.

- A cock for draining condensation from the tank. the vacuum level in the tank, previously set with the vacuum switch,

is automatically maintained. Pneumatic pumpsets are normally used for handling particularly heavy or valuable loads, since even in case of a sudden power supply failure, they allow the vacuum cups to maintain the grip for a certain amount of time (which varies according to the tank capacity). They are recommended for connecting several applications to centralise the vacuum. In any case, the use of the pumpset offers a great advantage under an energysaving point of view, since the generator operates only when vacuum is required by the application.

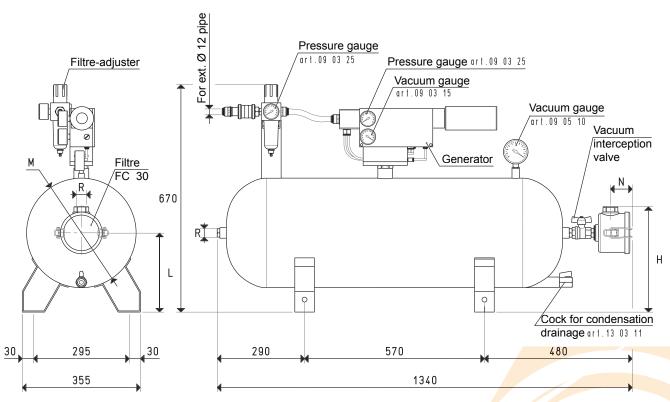

Pneumatic pumpsets require no electricity, only compressed air at a  $4 \div 6$  bar (g) pressure. For this feature, they are recommended in hazardous environments where an ignition source would be dangerous.



| Art.              | Tank   | Generator     | Pneumatic device | Н   | L   | M   | N  | R     | Weight |
|-------------------|--------|---------------|------------------|-----|-----|-----|----|-------|--------|
|                   | Litres | art.          | art.             |     |     | Ø   |    | Ø     | Kg     |
| DOP 25 PVP 25 MDX | 25     | PVP 25 MDX ES | DOP 20 90        | 225 | 185 | 240 | 51 | G1/2" | 15.9   |
| DOP 25 PVP 35 MDX | 25     | PVP 35 MDX ES | DOP 20 90        | 225 | 185 | 240 | 51 | G1/2" | 16.0   |

30






| Art.              | Tank   | Generator     | Pneumatic | G    | Н   | L   | M   | N  | R     | Hose   | Weight |
|-------------------|--------|---------------|-----------|------|-----|-----|-----|----|-------|--------|--------|
| AIL.              |        |               | device    |      |     |     |     |    |       | ext. ø |        |
| Litres            | Litres | art.          | art.      |      |     |     | Ø   |    | Ø     | Ø      | Kg     |
| DOP 50 PVP 50 MDX | 50     | PVP 50 MDX ES | DOP 20 90 | 27.5 | 245 | 205 | 280 | 51 | G1/2" | 8      | 18.9   |
| DOP 50 PVP 60 MDX | 50     | PVP 60 MDX ES | DOP 50 90 | 27.5 | 245 | 205 | 280 | 51 | G1/2" | 12     | 19.7   |

8.100

8

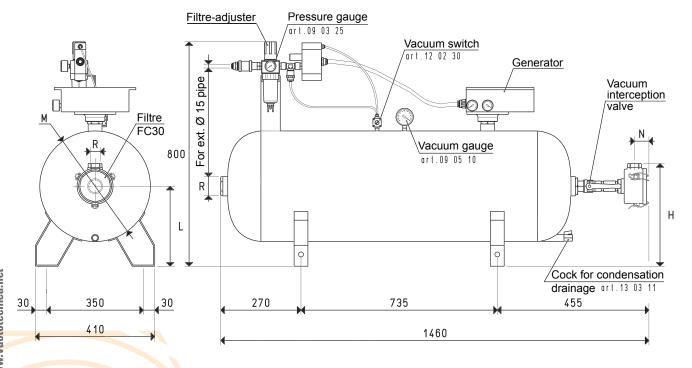




| Art.               | Tank   | Generator     | Pneumatic<br>device | Н   | L   | M   | N  | R   | Weight |
|--------------------|--------|---------------|---------------------|-----|-----|-----|----|-----|--------|
|                    | Litres | art.          | art.                |     |     | Ø   |    | Ø   | Kg -   |
| DOP 100 PVP 75 MDX | 100    | PVP 75 MDX ES | DOP 50 90           | 300 | 255 | 350 | 41 | G1" | 31.0   |

### PNEUMATIC PUMPSETS DOP 150 and DOP 300

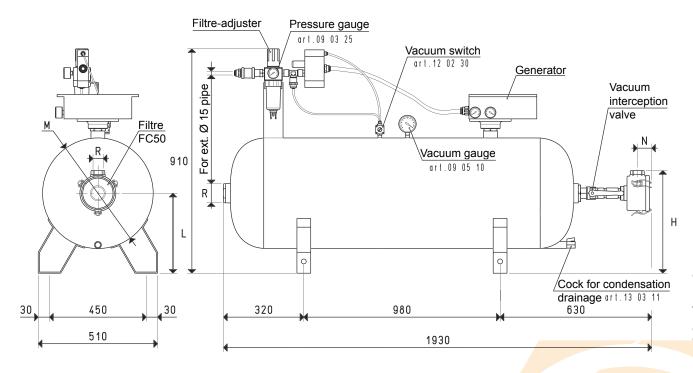
Pneumatic pumpsets are independent vacuum units fed exclusively by compressed air.


They are composed of:

- A welded sheet steel tank.
- A compressed air-operated vacuum generator.
- A pneumatic vacuum switch for adjusting the vacuum level.
- Un vacuum gauge for a direct reading of the vacuum level.
- A manual valve for vacuum interception.
- A suction filtre with an FC paper cartridge.
- A pressure adjuster equipped with filtre.
- A pneumatic activation valve for the vacuum generator supply.
- A sleeve valve for compressed air interception.
- A cock for draining condensation from the tank.

the vacuum level in the tank, previously set with the vacuum switch, is automatically maintained. Pneumatic pumpsets are normally used for handling particularly heavy or valuable loads, since even in case of a sudden power supply failure, allow the vacuum cups to maintain the grip for a certain amount of time (which varies according to the tank capacity). They are recommended for connecting several applications to centralise the vacuum. In any case, the use of the pumpset offers a great advantage under an energy-saving point of view, since the generator operates only when vacuum is required by the application.

Pneumatic pumpsets require no electricity, only compressed air at a  $4 \div 6$  bar (g) pressure. For this feature, they are recommended in hazardous environments where an ignition source would be dangerous.






| Art.    |            | Tank   | Generator   | Pneumatic<br>device | Н   | L   | M   | N  | R   | Weight |
|---------|------------|--------|-------------|---------------------|-----|-----|-----|----|-----|--------|
|         |            | Litres | art.        | art.                |     |     | Ø   |    | Ø   | Kg     |
| DOP 150 | PVP 150 MD | 150    | PVP 150 MDR | DOP 150 90          | 360 | 280 | 400 | 41 | G1" | 40.2   |

8

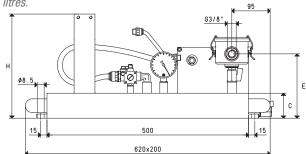




| Art.               | Tank   | Generator   | Pneumatic<br>device | Н   | L   | M   | N  | R      | Weight |
|--------------------|--------|-------------|---------------------|-----|-----|-----|----|--------|--------|
|                    | Litres | art.        | art.                |     |     | Ø   |    | Ø      | Kg .   |
| DOP 300 PVP 300 MD | 300    | PVP 300 MDR | DOP 150 90          | 440 | 340 | 500 | 45 | G1"1/2 | 41.2   |

### PNEUMATIC MINI PUMPSET AND PUMPSET COMPONENTS

### Mini pneumatic pumpset tanks DOP 06 and 10


Mini pneumatic pumpset tanks are horizontal with a rectangular section. They are made with welded sheet steel, a perfect vacuum seal, and varnished with special paints resistant to water condensation corrosion.

They are set for the installation of a vacuum generator to be chosen in the table and a pneumatic device.

They are equipped with:

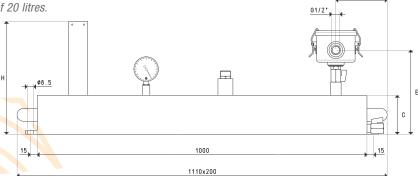
- A pneumatic vacuum switch for adjusting the maximum vacuum level.
- Un vacuum gauge for a direct reading of the vacuum level in the tank.
- A check valve suitable for the generator connection.
- A manual valve for vacuum interception.
- A suction filtre with an FC paper cartridge.
- A cock for condensation drainage.
- Hoses, fittings and screws for connecting and fixing the generator to the tank.

Available with volumes of 6 and 10 litres.



| Art.      |        |        |     |     |     | Set for   | <b>:</b>         |
|-----------|--------|--------|-----|-----|-----|-----------|------------------|
| ALL       | Tank   | Weight | C   | E   | Н   | Generator | Pneumatic device |
|           | Litres | Kg     |     |     |     | art.      | art.             |
| DOP 06 01 | 6      | 11.4   | 60  | 150 | 250 | PVP 12 MX | DOP 06 90        |
|           |        |        |     |     |     | PVP 25 MX |                  |
| DOP 10 01 | 10     | 11.6   | 100 | 210 | 290 | PVP 12 MX | DOP 06 90        |
|           |        |        |     |     |     | PVP 25 MX |                  |

### Mini pneumatic pumpset tanks DOP 20


Mini pneumatic pumpset tanks are horizontal with a rectangular section.

They are made with welded sheet steel, a perfect vacuum seal, and varnished with special paints resistant to water condensation corrosion.

They are set for the installation of a pneumatic device and a PVP .. MDX ES generator to be chosen in the table which are provided with built-in servo-controlled supply slide valve, check valve and pneumatic vacuum switch.

They are equipped with:

- Un vacuum gauge for a direct reading of the vacuum level in the tank.
- A manual valve for vacuum interception.
- A suction filtre with an FC paper cartridge.
- A cock for condensation drainage.
- Hoses, fittings and screws for connecting and fixing the generator to the tank. Available with a volume of 20 litres.



| Art.      |        |        |     |     |     |               | Set ior:         |
|-----------|--------|--------|-----|-----|-----|---------------|------------------|
|           | Tank   | Weight | C   | E   | Н   | Generator     | Pneumatic device |
|           | Litres | Kg     |     |     |     | art.          | art.             |
| DOP 20 01 | 20     | 18.2   | 100 | 225 | 290 | PVP 25 MDX ES | DOP 20 90        |
|           |        |        |     |     |     | PVP 35 MDX ES |                  |

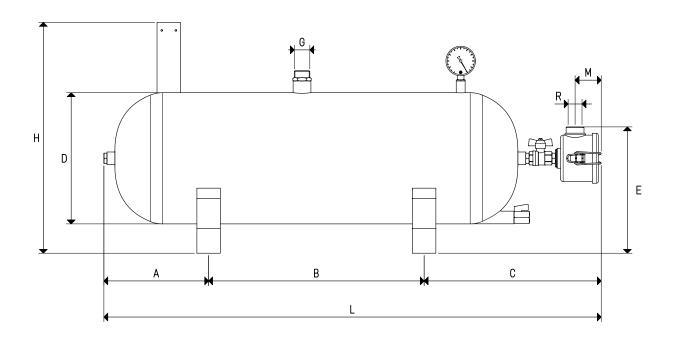
# drawing available at www.vuototecnica.net

# PNEUMATIC PUMPSET TANKS DOP 25, 50 and 100

Pneumatic pumpset tanks are horizontal with a circular section.

Made with welded sheet steel, a perfect vacuum seal, they are varnished with special paints resistant to water condensation corrosion.

They are set for the installation of a pneumatic device and a PVP .. MDX ES generator to be chosen in the table which are provided with built-in servo-controlled supply slide valve, check valve and pneumatic vacuum switch.


They are equipped with:

- A vacuum gauge for a direct reading of the vacuum level in the tank.
- A manual valve for vacuum interception.

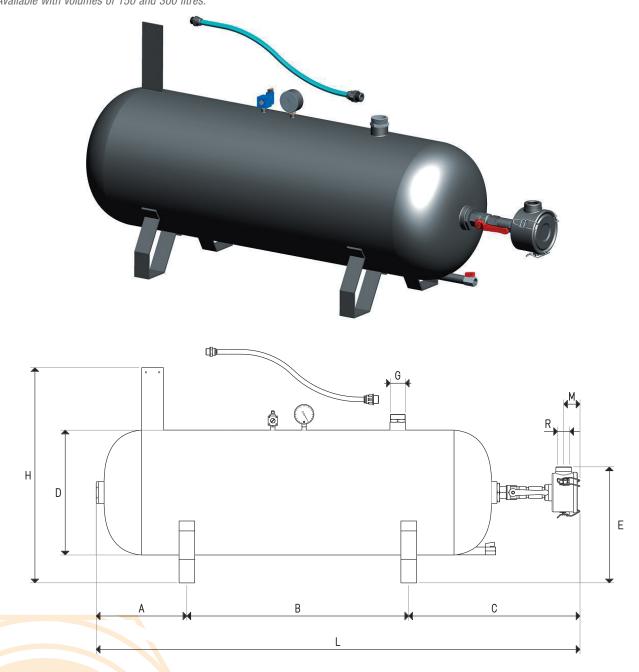
- A cock for condensation drainage.

- Hoses, fittings and screws for connecting and fixing the generator to the tank.

Available with volumes of 25, 50 and 100 litres.



|            |      |          |     |         |     |     |     |       |     |          |    |       | 0             |                  |  |
|------------|------|----------|-----|---------|-----|-----|-----|-------|-----|----------|----|-------|---------------|------------------|--|
| Art.       |      |          |     |         |     |     |     |       |     |          |    |       | Set for:      |                  |  |
|            | Ta   | nk Weigh | t A | В       | C   | D   | Ε   | G     | Н   | L        | M  | R     | Generator     | Pneumatic device |  |
|            | Litr | res Kg   |     |         |     | Ø   |     | Ø     |     |          |    | Ø     | art.          | art.             |  |
| DOP 25 01  | 2:   | 5 13.5   | 200 | 250x210 | 330 | 240 | 225 | G3/4" | 485 | 780x270  | 51 | G1/2" | PVP 25 MDX ES | DOP 20 90        |  |
|            |      |          |     |         |     |     |     |       |     |          |    |       | PVP 35 MDX ES |                  |  |
| DOP 50 01  | 50   | 16.4     | 220 | 460x245 | 400 | 280 | 245 | G3/4" | 492 | 1080x300 | 51 | G1/2" | PVP 50 MDX ES | DOP 20 90        |  |
| DOP 50 02  | 5    | 16.4     | 220 | 460x245 | 400 | 280 | 245 | G1"   | 492 | 1080x300 | 51 | G1/2" | PVP 60 MDX ES | DOP 50 90        |  |
| DOP 100 01 | 10   | 27.6     | 290 | 570x295 | 480 | 350 | 300 | G1"   | 585 | 1340x355 | 41 | G1"   | PVP 75 MDX ES | DOP 50 90        |  |


Pneumatic pumpset tanks are horizontal with a circular section.

Made with welded sheet steel a perfect vacuum seal, they are varnished with special paints resistant to water condensation corrosion.

They are set for the installation of a pneumatic device and a PVP .. MDX ES generator to be chosen in the table which are provided with built-in servo-controlled supply slide valve, check valve and pneumatic vacuum switch.

### They are equipped with:

- A pneumatic vacuum switch for adjusting the maximum vacuum level.
- Un vacuum gauge for a direct reading of the vacuum level in the tank.
- A manual valve for vacuum interception.
- A suction filtre with an FC paper cartridge.
- A cock for condensation drainage.
- Hoses, fittings and screws for connecting and fixing the generator to the tank. Available with volumes of 150 and 300 litres.

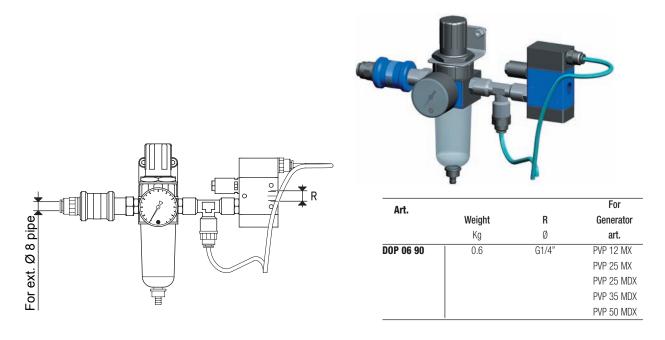


3D drawing available at www.vuototecnica.net

| Art.       |        |        |     |         |     |     |     |        |     | Set for: |    |        |             |                  |
|------------|--------|--------|-----|---------|-----|-----|-----|--------|-----|----------|----|--------|-------------|------------------|
| Aiti       | Tank   | Weight | Α   | В       | С   | D   | Ε   | G      | Н   | L        | M  | R      | Generator   | Pneumatic device |
|            | Litres | Kg     |     |         |     | Ø   |     | Ø      |     |          |    | Ø      | art.        | art.             |
| DOP 150 01 | 150    | 31.3   | 270 | 735x350 | 455 | 400 | 360 | G1"1/2 | 690 | 1460x410 | 41 | G1"    | PVP 150 MDR | DOP 150 90       |
| DOP 300 01 | 300    | 50.2   | 320 | 980x450 | 630 | 500 | 440 | G2"    | 775 | 1930x510 | 45 | G1"1/2 | PVP 300 MDR | DOP 150 90       |

# It is composed of:

The mini pumpset pneumatic control gear manages a vacuum generator and automatically maintains the vacuum level, set with the pneumatic vacuum switch, in the tank.


A pressure filtre-adjuster provided with pressure gauge, for adjusting the compressed air supply.
 A slide valve for compressed air interception.

- A 3-way servo-controlled valve for the vacuum generator supply

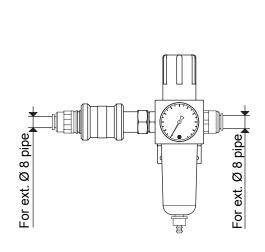
FOR MINI PUMPSETS DOP 06 and DOP 10

PNEUMATIC CONTROL GEAR

- Fittings and hoses for connecting the various component and screws for fixing them to the support



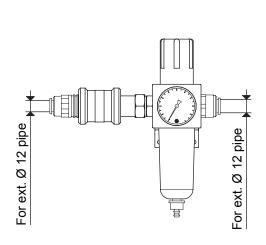
# PNEUMATIC CONTROL GEAR FOR MINI PUMPSETS DOP 20 AND PUMPSETS DOP 25, 50 and 100


The pneumatic control gear for these pumpsets manages a vacuum generator and automatically maintains the vacuum level, set with the built-in pneumatic vacuum switch, in the tank.

It is composed of:

A pressure filtre-adjuster provided with pressure gauge, for adjusting the compressed air supply.
 A slide valve for compressed air interception.

- Fittings and hoses for connecting the various component and screws for fixing them to the support.


Available in two sizes according to the supply connection.



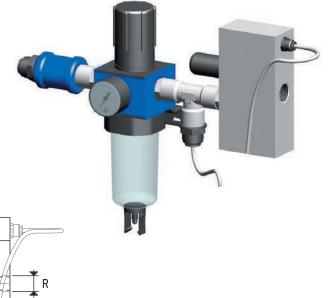


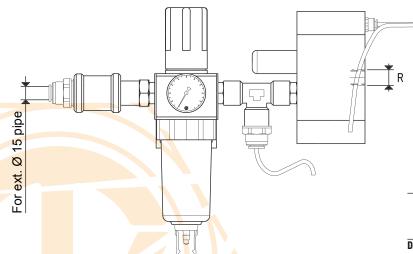
| Art.      |        | For |        |        |
|-----------|--------|-----|--------|--------|
| Alu       | Weight |     | gene   | erator |
|           | Kg     |     | a      | rt.    |
| DOP 20 90 | 0.4    |     | PVP 25 | MDX ES |
|           |        |     | PVP 35 | MDX ES |
|           |        |     | PVP 50 | MDX ES |
|           |        |     |        |        |

# PNEUMATIC CONTROL GEAR FOR PUMPSETS DOP 50 and 100






| Art.      |        | For           |  |  |  |
|-----------|--------|---------------|--|--|--|
| 74.41     | Weight | Generator     |  |  |  |
|           | Kg     | art.          |  |  |  |
| DOP 50 90 | 0.4    | PVP 60 MDX ES |  |  |  |
|           |        | PVP 75 MDX ES |  |  |  |


# PNEUMATIC CONTROL GEAR FOR PUMPSETS DOP 150 and 300

The pneumatic control gear for these pumpsets manages a vacuum generator and automatically maintains the vacuum level, set with the pneumatic vacuum switch, in the tank.

It is composed of:

- A pressure filtre-adjuster provided with pressure gauge, for adjusting the compressed air supply.
- A slide valve for compressed air interception.
- A 3-way servo-controlled valve for the vacuum generator supply
- Fittings and hoses for connecting the various component and screws for fixing them to the support.





| Art.       |        |       | For         |
|------------|--------|-------|-------------|
| 7          | Weight | R     | Generator   |
|            | Kg     | Ø     | art.        |
| DOP 150 90 | 1.1    | G1/2" | PVP 150 MDR |
|            |        |       | PVP 300 MDR |

3D drawing available at www.vuototecnica.net